1,178 research outputs found
Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans.
In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations
Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.
International audienceSHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders
The Genomic Signature of Crop-Wild Introgression in Maize
The evolutionary significance of hybridization and subsequent introgression
has long been appreciated, but evaluation of the genome-wide effects of these
phenomena has only recently become possible. Crop-wild study systems represent
ideal opportunities to examine evolution through hybridization. For example,
maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter,
mexicana) are known to hybridize in the fields of highland Mexico. Despite
widespread evidence of gene flow, maize and mexicana maintain distinct
morphologies and have done so in sympatry for thousands of years. Neither the
genomic extent nor the evolutionary importance of introgression between these
taxa is understood. In this study we assessed patterns of genome-wide
introgression based on 39,029 single nucleotide polymorphisms genotyped in 189
individuals from nine sympatric maize-mexicana populations and reference
allopatric populations. While portions of the maize and mexicana genomes were
particularly resistant to introgression (notably near known
cross-incompatibility and domestication loci), we detected widespread evidence
for introgression in both directions of gene flow. Through further
characterization of these regions and preliminary growth chamber experiments,
we found evidence suggestive of the incorporation of adaptive mexicana alleles
into maize during its expansion to the highlands of central Mexico. In
contrast, very little evidence was found for adaptive introgression from maize
to mexicana. The methods we have applied here can be replicated widely, and
such analyses have the potential to greatly informing our understanding of
evolution through introgressive hybridization. Crop species, due to their
exceptional genomic resources and frequent histories of spread into sympatry
with relatives, should be particularly influential in these studies
Assessing Immigrant Assimilation: New Empirical and Theoretical Challenges
This review examines research on the assimilation of immigrant groups. We review research on four primary benchmarks of assimilation: socioeconomic status, spatial concentration, language assimilation, and intermarriage. The existing literature shows that today's immigrants are largely assimilating into American society along each of these dimensions. This review also considers directions for future research on the assimilation of immigrant groups in new southern and midwestern gateways and how sociologists measure immigrant assimilation. We document the changing geography of immigrant settlement and review the emerging body of research in this area. We argue that examining immigrant assimilation in these new immigrant gateways is crucial for the development of theories about immigrant assimilation. We also argue that we are likely to see a protracted period of immigrant replenishment that may change the nature of assimilation. Studying this change requires sociologists to use both birth cohort and generation as temporal markers of assimilation.Sociolog
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
Case report: an unexpected link between partial deletion of the SHANK3 gene and Heller’s dementia infantilis, a rare subtype of autism spectrum disorder
International audienceAbstractBackgroundDeletions and mutations involving the SHANK3 gene lead to a nonspecific clinical presentation with moderate to profound intellectual disability, severely delayed or absent speech, and autism spectrum disorders (ASD).Better knowledge of the clinical spectrum of SHANK3 haploinsufficiency is useful to facilitate clinical care monitoring and to guide molecular diagnosis, essential for genetic counselling.Case presentationHere, we report a detailed clinical description of a 10-year-old girl carrying a pathogenic interstitial 22q13.3 deletion encompassing only the first 17 exons of SHANK3.The clinical features displayed by the girl strongly suggested the diagnosis of dementia infantilis, described by Heller in 1908, also known as childhood disintegrative disorder.ConclusionOur present case confirms several observations according to which regression may be part of the clinical phenotype of SHANK3 haploinsufficiency. Therefore, we think it is crucial to look for mutations in the gene SHANK3 in patients diagnosed for childhood disintegrative disorder or any developmental disorder with a regressive pattern involving social and communicative skills as well as cognitive and instinctual functions, with onset around 3 years
Becoming a new neuron in the adult olfactory bulb
New neurons are continually recruited throughout adulthood in certain regions of the adult mammalian brain. How these cells mature and integrate into preexisting functional circuits remains unknown. Here we describe the physiological properties of newborn olfactory bulb interneurons at five different stages of their maturation in adult mice. Patch-clamp recordings were obtained from tangentially and radially migrating young neurons and from neurons in three subsequent maturation stages. Tangentially migrating neurons expressed extrasynaptic GABAA receptors and then AMPA receptors, before NMDA receptors appeared in radially migrating neurons. Spontaneous synaptic activity emerged soon after migration was complete, and spiking activity was the last characteristic to be acquired. This delayed excitability is unique to cells born in the adult and may protect circuits from uncontrolled neurotransmitter release and neural network disruption. Our results show that newly born cells recruited into the olfactory bulb become neurons, and a unique sequence of events leads to their functional integration
Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments.
International audienceSHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice
A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover.
Mutations in LRRK2 are a common cause of genetic Parkinson's disease (PD). LRRK2 is a multi-domain Roco protein, harbouring kinase and GTPase activity. In analogy with a bacterial homologue, LRRK2 was proposed to act as a GTPase activated by dimerization (GAD), while recent reports suggest LRRK2 to exist under a monomeric and dimeric form in vivo. It is however unknown how LRRK2 oligomerization is regulated. Here, we show that oligomerization of a homologous bacterial Roco protein depends on the nucleotide load. The protein is mainly dimeric in the nucleotide-free and GDP-bound states, while it forms monomers upon GTP binding, leading to a monomer-dimer cycle during GTP hydrolysis. An analogue of a PD-associated mutation stabilizes the dimer and decreases the GTPase activity. This work thus provides insights into the conformational cycle of Roco proteins and suggests a link between oligomerization and disease-associated mutations in LRRK2
- …
