432 research outputs found

    Chronic obstructive pulmonary disease (COPD) in elderly subjects: impact on functional status and quality of life

    Get PDF
    AbstractChronic obstructive pulmonary disease (COPD) is an important cause of morbidity and disability. Many studies have investigated factors influencing quality of life (QoL) in middle-aged COPD sufferers, but little attention has been given to elderly COPD. The aim of the present study was to investigate the impact of COPD on QoL and functional status in the elderly. Sixty COPD patients and 58 healthy controls over 65 years old were administered Pulmonary Function Tests, 6min Walking Test (6MWD) for exercise tolerance, the Barthel Index and Mini Mental State Examination (MMSE) for functional status, the Geriatric Depression Scale (GDS) for mood, and the Saint George Respiratory Questionnaire (SGRQ) for QoL. FEV1 and P aO2 were reduced in COPD patients. Also the distance walked during 6MWD was significantly shorter for patients than controls (282.5±89.5 vs. 332.9±95.2m; P<0.01). Moreover, COPD patients had significantly worse outcomes for the Barthel Index, GDS and SGRQ. The logistic regression model demonstrated that a decrease in FEV1 is the factor most strictly related to the deterioration of QoL in COPD patients. Mood was also an independent factor influencing QoL. In conclusion, elderly COPD patients show a substantial impairment in QoL depending on the severity of airway obstruction; symptoms related to the disease may be exaggerated by mood deflection

    Variability in the Dynamics of Mortality and Immobility Responses of Freshwater Arthropods Exposed to Chlorpyrifos

    Get PDF
    The species sensitivity distribution (SSD) concept is an important probabilistic tool for environmental risk assessment (ERA) and accounts for differences in species sensitivity to different chemicals. The SSD model assumes that the sensitivity of the species included is randomly distributed. If this assumption is violated, indicator values, such as the 50% hazardous concentration, can potentially change dramatically. Fundamental research, however, has discovered and described specific mechanisms and factors influencing toxicity and sensitivity for several model species and chemical combinations. Further knowledge on how these mechanisms and factors relate to toxicologic standard end points would be beneficial for ERA. For instance, little is known about how the processes of toxicity relate to the dynamics of standard toxicity end points and how these may vary across species. In this article, we discuss the relevance of immobilization and mortality as end points for effects of the organophosphate insecticide chlorpyrifos on 14 freshwater arthropods in the context of ERA. For this, we compared the differences in response dynamics during 96 h of exposure with the two end points across species using dose response models and SSDs. The investigated freshwater arthropods vary less in their immobility than in their mortality response. However, differences in observed immobility and mortality were surprisingly large for some species even after 96 h of exposure. As expected immobility was consistently the more sensitive end point and less variable across the tested species and may therefore be considered as the relevant end point for population of SSDs and ERA, although an immobile animal may still potentially recover. This is even more relevant because an immobile animal is unlikely to survive for long periods under field conditions. This and other such considerations relevant to the decision-making process for a particular end point are discussed

    Quantum Fields and Extended Objects in Space-Times with Constant Curvature Spatial Section

    Full text link
    The heat-kernel expansion and ζ\zeta-regularization techniques for quantum field theory and extended objects on curved space-times are reviewed. In particular, ultrastatic space-times with spatial section consisting in manifold with constant curvature are discussed in detail. Several mathematical results, relevant to physical applications are presented, including exact solutions of the heat-kernel equation, a simple exposition of hyperbolic geometry and an elementary derivation of the Selberg trace formula. With regards to the physical applications, the vacuum energy for scalar fields, the one-loop renormalization of a self-interacting scalar field theory on a hyperbolic space-time, with a discussion on the topological symmetry breaking, the finite temperature effects and the Bose-Einstein condensation, are considered. Some attempts to generalize the results to extended objects are also presented, including some remarks on path integral quantization, asymptotic properties of extended objects and a novel representation for the one-loop (super)string free energy.Comment: Latex file, 122 page

    Glioblastoma surgery imaging—reporting and data system: Standardized reporting of tumor volume, location, and resectability based on automated segmentations

    Get PDF
    Treatment decisions for patients with presumed glioblastoma are based on tumor characteristics available from a preoperative MR scan. Tumor characteristics, including volume, location, and resectability, are often estimated or manually delineated. This process is time consuming and subjective. Hence, comparison across cohorts, trials, or registries are subject to assessment bias. In this study, we propose a standardized Glioblastoma Surgery Imaging Reporting and Data System (GSI-RADS) based on an automated method of tumor segmentation that provides standard reports on tumor features that are potentially relevant for glioblastoma surgery. As clinical validation, we determine the agreement in extracted tumor features between the automated method and the current standard of manual segmentations from routine clinical MR scans before treatment. In an observational consecutive cohort of 1596 adult patients with a first time surgery of a glioblastoma from 13 institutions, we segmented gadolinium-enhanced tumor parts both by a human rater and by an automated algorithm. Tumor features were extracted from segmentations of both methods and compared to assess differences, concordance, and equivalence. The laterality, contralateral infiltration, and the laterality indices were in excellent agreement. The native and normalized tumor volumes had excellent agreement, consistency, and equivalence. Multifocality, but not the number of foci, had good agreement and equivalence. The location profiles of cortical and subcortical structures were in excellent agreement. The expected residual tumor volumes and resectability indices had excellent agreement, consistency, and equivalence. Tumor probability maps were in good agreement. In conclusion, automated segmentations are in excellent agreement with manual segmentations and practically equivalent regarding tumor features that are potentially relevant for neurosurgical purposes. Standard GSI-RADS reports can be generated by open access software

    Glioblastoma Surgery Imaging-Reporting and Data System: Validation and Performance of the Automated Segmentation Task

    Get PDF
    For patients with presumed glioblastoma, essential tumor characteristics are determined from preoperative MR images to optimize the treatment strategy. This procedure is time-consuming and subjective, if performed by crude eyeballing or manually. The standardized GSI-RADS aims to provide neurosurgeons with automatic tumor segmentations to extract tumor features rapidly and objectively. In this study, we improved automatic tumor segmentation and compared the agreement with manual raters, describe the technical details of the different components of GSI-RADS, and determined their speed. Two recent neural network architectures were considered for the segmentation task: nnU-Net and AGU-Net. Two preprocessing schemes were introduced to investigate the tradeoff between performance and processing speed. A summarized description of the tumor feature extraction and standardized reporting process is included. The trained architectures for automatic segmentation and the code for computing the standardized report are distributed as open-source and as open-access software. Validation studies were performed on a dataset of 1594 gadolinium-enhanced T1-weighted MRI volumes from 13 hospitals and 293 T1-weighted MRI volumes from the BraTS challenge. The glioblastoma tumor core segmentation reached a Dice score slightly below 90%, a patientwise F1-score close to 99%, and a 95th percentile Hausdorff distance slightly below 4.0 mm on average with either architecture and the heavy preprocessing scheme. A patient MRI volume can be segmented in less than one minute, and a standardized report can be generated in up to five minutes. The proposed GSI-RADS software showed robust performance on a large collection of MRI volumes from various hospitals and generated results within a reasonable runtime

    Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms

    Get PDF
    This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low-grade gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG acquired clinically across 12 hospitals worldwide. Data was split into 80% training, 5% validation, and 15% internal test data. An additional external test-set of 158 GBM and 69 LGG was used to assess generalisability to other hospitals’ data. All models’ median Dice similarity coefficient (DSC) for both test sets were within, or higher than, previously reported human inter-rater agreement (range of 0.74–0.85). For both test sets, nn-Unet achieved the highest DSC (internal = 0.86, external = 0.93) and the lowest Hausdorff distances (10.07, 13.87 mm, respectively) for all tumor classes (p < 0.001). By applying Sparsified training, missing MRI sequences did not statistically affect the performance. nn-Unet achieves accurate segmentations in clinical settings even in the presence of incomplete MRI datasets. This facilitates future clinical adoption of automated glioma segmentation, which could help inform treatment planning and glioma monitoring

    Feasibility, reliability and validity of a questionnaire on healthcare consumption and productivity loss in patients with a psychiatric disorder (TiC-P)

    Get PDF
    Background: Patient self-report allows collecting comprehensive data for the purpose of performing economic evaluations. The aim of the current study was to assess the feasibility, reliability and a part of the construct validity of a commonly applied questionnaire on healthcare utilization and productivity losses in patients with a psychiatric disorder (TiC-P). Methods. Data were derived alongside two clinical trials performed in the Netherlands in patients with mental health problems. The response rate, average time of filling out the questionnaire and proportions of missing values were used as indicators of feasibility of the questionnaire. Test-retest analyses were performed including Cohen's kappa and intra class correlation coefficients to assess reliability of the data. The construct validity was assessed by comparing patient reported data on contacts with psychotherapists and reported data on long-term absence from work with data derived from registries. Results: The response rate was 72%. The mean time needed for filling out the first TiC-P was 9.4 minutes. The time needed for filling out the questionnaire was 2.3 minutes less for follow up measurements. Proportions of missing values were limited (< 2.4%) except for medication for which in 10% of the cases costs could not be calculated. Cohen's kappa was satisfactory to almost perfect for most items related to healthcare consumption and satisfactory for items on absence from work and presenteeism. Comparable results were shown by the ICCs on variables measuring volumes of medical consumption and productivity losses indicating good reliability of the questionnaire. Absolute agreement between patient-reported data and data derived from medical registrations of the psychotherapists was satisfactory. Accepting a margin o
    corecore