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Simple Summary: Neurosurgical decisions for patients with glioblastoma depend on tumor charac-
teristics in the preoperative MR scan. Currently, this is based on subjective estimates or manual tumor
delineation in the absence of a standard for reporting. We compared tumor features of 1596 patients
from 13 institutions extracted from manual segmentations by a human rater and from automated
segmentations generated by a machine learning model. The automated segmentations were in
excellent agreement with manual segmentations and are practically equivalent regarding tumor
features that are potentially relevant for neurosurgical purposes. Standard reports can be generated
by open access software, enabling comparison between surgical cohorts, multicenter trials, and
patient registries.

Abstract: Treatment decisions for patients with presumed glioblastoma are based on tumor charac-
teristics available from a preoperative MR scan. Tumor characteristics, including volume, location,
and resectability, are often estimated or manually delineated. This process is time consuming and
subjective. Hence, comparison across cohorts, trials, or registries are subject to assessment bias. In
this study, we propose a standardized Glioblastoma Surgery Imaging Reporting and Data System
(GSI-RADS) based on an automated method of tumor segmentation that provides standard reports
on tumor features that are potentially relevant for glioblastoma surgery. As clinical validation,
we determine the agreement in extracted tumor features between the automated method and the
current standard of manual segmentations from routine clinical MR scans before treatment. In an
observational consecutive cohort of 1596 adult patients with a first time surgery of a glioblastoma
from 13 institutions, we segmented gadolinium-enhanced tumor parts both by a human rater and by
an automated algorithm. Tumor features were extracted from segmentations of both methods and
compared to assess differences, concordance, and equivalence. The laterality, contralateral infiltration,
and the laterality indices were in excellent agreement. The native and normalized tumor volumes
had excellent agreement, consistency, and equivalence. Multifocality, but not the number of foci,
had good agreement and equivalence. The location profiles of cortical and subcortical structures
were in excellent agreement. The expected residual tumor volumes and resectability indices had
excellent agreement, consistency, and equivalence. Tumor probability maps were in good agreement.
In conclusion, automated segmentations are in excellent agreement with manual segmentations
and practically equivalent regarding tumor features that are potentially relevant for neurosurgical
purposes. Standard GSI-RADS reports can be generated by open access software.

Keywords: glioblastoma; magnetic resonance imaging; neuroimaging; computer-assisted image
processing; machine learning; neurosurgical procedures

1. Introduction

The preoperative MR scan of a patient with a glioblastoma contains essential in-
formation that is interpreted by a neurosurgical team for a surgical strategy. Decisions
on whether to perform a biopsy or a resection, estimations on how much tumor can be
safely removed, the risks of complications and loss of brain functions, and judgements
concerning the complexity of the surgery and ensuing pre- and intraoperative diagnostics
are imperative for patient outcomes. In addition, the initial scan holds prognostic infor-
mation, including tumor volume and location [1–3], which guides clinical decisions on
radiotherapy and chemotherapy and serves patient counseling. In reports of surgical co-
horts, multicenter trials, and registries, outcomes are customarily related to measurements
of tumor characteristics on the initial scan and related to the outcomes and measurements
of other teams [4–15]. Furthermore, these reports are pooled in meta-analyses enabling the
identification of new patterns in the reported data to guide future clinical decisions [16,17].
Reliable measurements of tumor characteristics are therefore instrumental in patient care
and in the development of glioblastoma treatment.
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Whereas the response assessment of neuro-oncological treatment mainly focuses on
changes in tumor volume over time [18,19] and radiotherapy planning on the clinical
target volume on postoperative scans [20–23], pre-treatment tumor characteristics are of
special interest for neurosurgical purposes. In addition to tumor volume, these include
measurements of distance to and overlap with brain structures and expected resectability.
The current standard is segmentation of the tumor in 3D, while qualitative description,
measurement of tumor diameter, and bidimensional products are also in use [24]. These
segmentations by human raters have disadvantages. Manual segmentations are time-
consuming [25] and therefore expensive. It is common to have inexperienced students or
junior investigators as raters for large numbers of segmentations. The level of experience
of the rater is an important contributing factor to the accuracy of segmentations [26,27].
Certification of expert raters has not been established. The reproducibility of manual
segmentations can be limited, probably due to human error, as attention may fluctuate
in monotonous tasks [26,28–33]. In addition, segmentation updates or revisions take
considerable time.

Automated segmentation algorithms have been developed and compared with man-
ual segmentations as ground truth [34]. Convolutional neural networks [35], in partic-
ular employing U-Net [36], dominate the applications. Their performances have been
benchmarked on a standardized image dataset (the Brain Tumor Image Segmentation,
BraTS [32,34]), using a diagnostic accuracy approach with human rater segmentations as
reference. In this approach, the spatial overlap of segmented voxels is typically reported as
a Dice score, and the distance of segmentation surfaces as a Hausdorff metric. Nevertheless,
this strictly determines the voxel-wise resemblance between an automated segmentation
and the reference segmentation. This does not address the clinical utility of these segmen-
tations, and the curated standardized image dataset is not representative for routine scans,
which are often of suboptimal quality due to motion artefacts, missing sequences, and
other image degradation. Furthermore, in routine scans, brains are not extracted, as is the
case in the BraTS dataset.

Standard reporting and data systems (RADS) have been established for several solid
tumors, including prostate cancer [37,38], hepatocellular carcinoma [39], head and neck
squamous cell carcinoma [40], solitary bone tumors [41], bladder cancer [42], breast can-
cer [43], lymph node involvement by cancer [44], and lung cancer [45]. These RADS have
enabled rules for imaging techniques, terminology for reports, definitions of tumor features,
and treatment response, with less practice variation and reproducible tumor classification.
Its broad implementation should facilitate collaborations and stimulate evaluation for
development and improvement of RADS.

In this study, we determine the agreement in extracted tumor features between au-
tomated and manual segmentations from routine clinical MR scans before treatment and
describe their discrepancies. We propose a standardized Glioblastoma Surgery Imaging
Reporting and Data System (GSI-RADS) to automatically extract tumor features that are
potentially relevant for glioblastoma surgery and demonstrate the use of a software module
to create standard reports.

2. Materials and Methods
2.1. Patients and MR Images

We identified all patients of at least 18 years old with a newly diagnosed glioblastoma
at first-time surgery between 1 January 2012 and 31 December 2013 from 13 hospitals:
Northwest Clinics, Alkmaar, The Netherlands (ALK); Amsterdam University Medical
Centers, location VU Medical Center, The Netherlands (AMS); University Medical Center
Groningen, The Netherlands (GRO); Medical Center Haaglanden, The Hague, The Nether-
lands (HAG); Humanitas Research Hospital, Milano, Italy (MIL); Hôpital Lariboisière,
Paris, France (PAR); University of California San Francisco Medical Center, US (SFR);
Medical Center Slotervaart, Amsterdam, The Netherlands (SLO); St Elisabeth Hospital,
Tilburg, The Netherlands (TIL); University Medical Center Utrecht, The Netherlands (UTR);
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Medical University Vienna, Austria (VIE); and Isala hospital, Zwolle, The Netherlands
(ZWO), and between 2007 and 2018 from one hospital: St Olav’s hospital, Trondheim
university Hospital, Norway (STO). Patients gave their informed consent for scientific
use of their data, as required for each participating hospital. The study was conducted in
accordance with the Declaration of Helsinki, and the protocol was approved by the Medical
Ethics Review Committee. Data and images for analysis were pseudonymized for analysis.

Patients were identified at each hospital by prospective electronic databases. Part of
this cohort was reported earlier to address resectability and comparison of surgical deci-
sions between institutes [46,47]. Descriptive information was collected from the electronical
medical records, including age and gender.

Preoperative MR scans were acquired from the hospitals’ archival systems and in-
cluded a 3D heavily T1-weighted gradient-echo pulse sequence at 1 mm isotropic resolution,
obtained before and after administration of intravenous gadolinium, and a T2/FLAIR-
weighted gradient-echo pulse sequence. MR scan protocols were standardized in hospitals
but not identical between hospitals. Scanners from several vendors were in use, including
Siemens, model Sonata, Avanto, Skyra, Prisma and mMR; GE medical systems, model
Signa HDxt or DISCOVERY MR750; Toshiba, model Titan3T; and Philips, model Panorama
HFO or Ingenuity with field strength of 1.5T or 3T. Detailed scan protocols have been
described elsewhere [25,48].

2.2. Manual Tumor Segmentations

Tumors were manually segmented in 3D by trained raters using an initiation by either
a region growing algorithm [26] (Brainlab SmartBrush, BrainLAB AG, Münich, Germany)
or a grow cut algorithm [49] (3D Slicer, http://www.slicer.org, accessed on 3 June 2021)
and subsequent manual editing. Trained raters were supervised by neuroradiologists and
neurosurgeons. The tumor was defined as gadolinium-enhancing tissue on T1-weighted
scans, including nonenhancing enclosed necrosis or cysts.

2.3. Automated Tumor Segmentations

A segmentation model was trained following a leave-one-hospital-out cross-validation
strategy over the 1596 MRI volumes featured in our dataset, using the AGUNet architec-
ture [50]. The model was trained from scratch, using the Dice Loss as cost function [51]
and an Adam optimizer with an initial learning rate of 1e−3 and stopped after 30 epochs
without validation loss improvement. Data augmentation was performed during train-
ing to improve generalization, such as random horizontal and vertical flip, rotation, and
translation transforms.

2.4. Extracted Tumor Features

To correlate the tumor segmentations with standard anatomy, patient images were non-
linearly registered to a standard anatomical reference space, here consisting of the symmet-
ric Montreal Neurological Institute ICBM2009a atlas, symmetric version 09a (MNI) [52,53],
using symmetric image normalization as previously described [54,55]. From both the
manual and the automated segmentation of each patient, the following measurements
were extracted.

The laterality was defined as the main part of the tumor coinciding with either the
left or right hemisphere, or none in the case where a tumor volume was not detected.
Contralateral infiltration was defined as binary variable, true if any tumor voxel involved
the contralateral hemisphere. The laterality index was defined as an index of tumor
distribution between hemispheres, where −1 represents a tumor entirely located in the
right hemisphere, 0 represents equal distribution of tumor between both hemispheres, and
1 represents a tumor completely located in the left hemisphere.

The native tumor volume in mL was defined as the number of tumor voxels in patient
space times the volume of a tumor voxel in patient space. The normalized tumor volume

http://www.slicer.org
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in mL was defined as the number of tumor voxels in reference space times the volume of a
tumor voxel in reference space.

Multifocality was defined as binary variable, true if more than one contrast-enhancing
tumor component was observed and the second contrast-enhancing tumor component
had a minimum volume of 0.1 mL and a minimum distance between the first and second
largest tumor components of 5 mm. The number of foci was counted as the number of
unconnected components.

The location profile of cortical structures is represented by the percentage of patients
with a tumor per cortical parcel in a circular barplot [56]. We demonstrate the location pro-
file of the cohort for two commonly used brain parcellations, Desikan’s brain parcellation
with 96 parcels based on anatomy [57] and Schaefer’s brain parcellation with 17 network
classes from 400 parcels based on functional connectivity using a resting state functional
MRI [58,59]. Involvement of a patient’s tumor with a parcel was defined as any tumor
voxel from a patient overlapping with that parcel.

The location profile of subcortical structures is represented by the percentage of
patients with a tumor per white matter structure in a circular barplot [56]. The subcortical
white matter structures deemed potentially relevant for surgery comprise a selection of
tracts in each hemisphere, consisting of the corticospinal tract with a paracentral and
three hand segments; the superior longitudinal fasciculus with three divisions; the arcuate
fasciculus with a long, anterior, and posterior segment; the frontal aslant tract; the frontal
striatal tract; the inferior fronto-occipital fasciculus; the uncinate fasciculus; the inferior
longitudinal fascicle; and the optic radiation. The white matter structure definitions from
the Brain Connectivity and Behaviour group were used [60]. The involvement of a patient’s
tumor with a structure was defined as any tumor voxel overlapping with that white
matter structure.

The expected residual tumor volume and the expected resectability index were calcu-
lated with a resection probability map of 451 patients with glioblastoma surgery in the left
hemisphere and 464 patients in the right hemisphere, as reference, consisting of a subset of
the current study population [46]. To calculate the resectability, the tumor segmentation
masked the resection probability map. The resection probabilities of the masked voxels
were summed to obtain the expected resectable volume. The preoperative tumor volume
minus the expected resectable volume resulted in the expected residual tumor volume
in mL. A division of the expected resectable volume by the preoperative tumor volume
resulted in the expected resectability index, ranging from 0.0 to 1.0. This method has been
detailed and validated elsewhere [46].

The tumor probability map was constructed for the whole population as 3D volume
in standard brain space at 1 mm resolution. The fraction of tumors divided by the total
number of patients was calculated voxel-wise.

2.5. Software Module and Standard Report

The proposed GSI-RADS software (https://github.com/SINTEFMedtek/GSI-RADS,
accessed on 3 June 2021) enables the extraction of the described tumor features from a
patient’s preoperative MR scan locally. The software has been developed in Python 3
and is compatible for use on Windows 10 (Microsoft Corp., Redmond, WA, USA), macOS
(≥10.13; Apple Inc., Cupertino, CA, USA), and Ubuntu Linux 18.04 (Canonical Group
Ltd., London, UK). A minimalistic GUI is provided to the user for specifying the required
parameters and running the process. The input for the software consists of a 3D T1-
weighted gadolinium-enhanced MRI volume provided as a DICOM sequence or NIfTI
format. A manual segmentation of the tumor can be provided by the user (e.g., NIfTI
format); if not, an automatic segmentation will be generated using the trained model. The
output consists of a generated standard report in text (.txt) and CSV format, alongside
multiple NIfTI files containing the tumor segmentation as a binary mask (in patient and
MNI spaces), the registered MR scan in MNI space, and the anatomical region masks in
patient space.

https://github.com/SINTEFMedtek/GSI-RADS
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The standard report summarizes the extracted tumor features for each patient. These
include the tumor laterality, contralateral infiltration, the laterality index, the native and
normalized tumor volumes, the presence of multifocality and the number of foci, the
percentage of tumor overlap with cortical parcels and subcortical structures, the expected
residual tumor volume and expected resectability, and binary maps of the tumor segmenta-
tion in patient space and standard brain space.

2.6. Statistical Analysis

Differences in laterality, contralateral infiltration, multifocality, number of foci, and
cortical and subcortical profiles between automated and manual segmentations were
evaluated in contingency tables and tested for significance of paired data using McNemar’s
test for two classes and Friedman’s test for more than two classes. The concordance as a
percentage was calculated by dividing the sum of concordant classes over the total number
of patients. Differences in native and normalized tumor volumes and expected residual
volumes and resectability indices were tested for significance using the Wilcoxon signed-
rank test for paired data. Agreement in laterality index, native and normalized tumor
volumes, expected residual tumor volumes, and resectability indices between automated
and manual segmentations was displayed in histograms, scatter plots, and Bland–Altman
plots and calculated as an intraclass-correlation coefficient using a one-way model based
on agreement with 95% confidence interval [61–64]. Equivalence in laterality, contralateral
infiltration, native and normalized tumor volumes, multifocality, number of foci, expected
residual tumor volumes, and resectability indices were tested using two one-sided tests for
the smallest effect size of interest [65]. The smallest effect size of interest for equivalence
bounds in proportions was considered to be 10%, for volumes two mL, for foci one focus,
and for expected resectability indices 0.1. The product moment correlation coefficient with
95% confidence interval was calculated for the laterality indices, the native and normalized
tumor volumes, expected residual tumor volumes, and expected resectability indices
between automated and manual segmentations. Voxel-wise agreement was evaluated in
tumor probability maps based on automated and manual segmentations. False discovery
rates were calculated for the voxel-wise differences using a permutation test, as previously
detailed [47,66].

3. Results
3.1. Patients

A total of 1596 patients were included in this analysis. No scans were excluded based
on poor image quality or failed registration. A listing of the populations per hospital is
provided in Table 1.

Table 1. Patient characteristics.

Hospital NWZ SLZ ISALA PARIS HUM MUW UMCG

n 38 49 72 74 75 83 86

females, n (%) 13
(34.2%)

25
(51.0%)

9
(12.5%)

33
(44.6%)

29
(38.7%)

36
(43.4%)

31
(36.0%)

median age in years
(interquartile range)

63.4
(17.4)

63.6
(14.2)

67.2
(20.7)

59.0
(13.5)

62.7
(16.3)

67.3
(19.7)

62.8
(12.4)

Hospital VUmc HMC UCSF ETZ UMCU STO overall

n 97 103 134 153 171 461 1596

females, n (%) 35
(36.1%)

38
(36.9%)

49
(36.6%)

50
(32.7%)

63
(36.8%)

189
(41.0%)

600
(37.6%)

median age in years
(interquartile range)

64.0
(16.2)

61.1
(18.1)

64.2
(14.8)

63.8
(12.2)

66.2
(16.4)

61.7
(14.4)

63.2
(15.7)
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3.2. Agreement in Tumor Features between Manual and Automated Segmentations
3.2.1. Laterality, Contralateral Infiltration, and the Laterality Index

The automated and the manual segmentations, respectively, identified 785 (49.2%) and
794 (49.7%) patients with left-sided tumors, 792 (49.6%) and 799 (50.1%) patients with right-
sided tumors, and 19 (1.2%) and 3 (0.2%) patients in whom no tumor volume was identified
and hence were devoid of laterality, as listed in Table 2. Of the five discordant cases with
opposing laterality, four were midline tumor with slightly dissimilar tumor voxel numbers
in either hemisphere, and one scan was of poor quality with faint gadolinium enhancement
of the tumor that the automated method failed to detect while a false positive segmentation
of choroidal plexus was segmented contralaterally. In 17 (1.1%) patients, the automated
segmentation did not identify a tumor, whereas the human rater did, due to minute tumor
size, faint gadolinium enhancement, or poor scan quality. The observed laterality difference
was statistically not different from zero (odds ratio: 0.98, 95% CI: 0.89–1.09; p-value = 0.744)
and statistically equivalent to zero (95% CI: −0.029 to 0.030; Z = −5.59, p-value < 0.0001).
The concordance was 98.6%.

Table 2. Contingency table of laterality between automated and manual segmentations.

Laterality by Automated Segmentation

Laterality by Manual
Segmentation left right none subtotal

left 782 2 10 794
right 3 789 7 799
none 0 1 2 3

subtotal 785 792 19

Contralateral infiltration was observed in 430 (26.9%) patients based on the automated
segmentations and in 469 (29.4%) based on the manual segmentations, as listed in Table 3.
The observed difference in contralateral infiltration was statistically not different from zero
(Z = 1.54, p-value = 0.125) and statistically not equivalent to zero (95% CI: −0.007 to 0.056;
Z = −1.61, p-value = 0.0541). The concordance was 95.4%.

Table 3. Contingency table of contralateral infiltration between automated and manual segmentations.

Contralateral Infiltration by Automated Segmentation

Contralateral Infiltration by
Manual Segmentation no yes subtotal

no 1110 17 1127
yes 56 413 469

subtotal 1166 430 1596

The distribution of the laterality indices determined by automated and manual seg-
mentations and their correlation are shown in Figure 1A and the Bland–Altman plot in
Figure 1B. The correlation coefficient was 0.998 (95% CI: 0.998–0.998). No bias was observed
(0.00039, 95% CI: −0.0024 to 0.0032). The lower and upper 95% limits of agreement were
−0.11 and 0.11.
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Figure 1. Comparison between automated and manual segmentations for the laterality index in (A) a correlation plot with
histograms in the margin and (B) a Bland–Altman plot. In the scatterplots, each dot represents the laterality indices of
one patient. The diagonal indicates the identity line. The Bland–Altman plots of the mean of laterality indices versus the
difference between the laterality indices. Each dot represents one patient. The bias is plotted as solid green line with 95% CI
as dotted green lines. The limits of agreement are plotted as dotted red lines.

This indicates excellent agreement to detect laterality, contralateral infiltration, and
the laterality index between the segmentation methods.

3.2.2. Tumor Volumes

The difference between the native and normalized tumor volumes was plotted in
Figure 2A,B. The median (interquartile range) of this difference for automated segmen-
tations was −2.6 (6.8) mL and for manual segmentations −3.2 (7.5) mL. Apparently, the
standard brain is somewhat larger than the brains of many patients. Therefore, we assessed
normalized tumor volume in addition to native tumor volume.

The median (interquartile range) of the native tumor volumes was 26.5 (36.6) mL
for automated segmentations and 26.6 (37.1) mL for manual segmentations, with a small
but clinically negligible difference (0.4 mL, 95% CI: 0.4–0.5; p-value < 0.0001), well within
the smallest effect size of interest of 2 mL (one-sided test for the upper bound t = −11.4,
df = 1595, p-value < 0.0001 and for the lower bound t = 17.3, df = 1595, p-value < 0.0001).

The median (interquartile range) of the normalized tumor volumes was 30.1 (42.4) mL
for the automated segmentations, and 31.2 (42.0) mL for the manual segmentations, again
with a negligibly small difference (1.0 mL, 95% CI: 0.8–1.1; p-value < 0.0001), well within
the smallest size of interest of 2 mL (one-sided test for the upper bound t = −4.9, df = 1595,
p-value < 0.0001 and for the lower bound t = 17.3, df = 1595, p-value < 0.0001).

The intraclass correlation coefficient of the native tumor volumes was 98.2% (95%
CI: 98.0–98.3%) and of the normalized tumor volumes 97.9% (95% CI: 97.7–98.1%), indicat-
ing excellent internal consistency.

In Figure 2C,E, the native and normalized tumor volumes based on automated and
manual segmentations are plotted, indicating excellent agreement. In the Bland–Altman
plots in Figure 2D,F, a small negligible systematic bias was observed between the automated
and manual segmentations for native (0.4 mL, 95% CI: 0.1–0.7) and normalized tumor
volumes (1.2 mL, 95% CI: 0.9–1.5). The limits of agreement were between −11.0 and
11.3 mL for the native tumor volumes and between −11.8 and 14.2 mL for the normalized
tumor volumes.
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Figure 2. Comparison between manual and automated segmentations: (A) a histogram of absolute difference for the
manual segmentations and (B) for the automated segmentations, (C) a correlation plot of the native tumor volumes with
histograms in the margin, (D) a Bland–Altman plot for the native tumor volumes, (E) a correlation plot of the normalized
tumor volumes with histograms in the margin, and (F) a Bland–Altman plot for the normalized tumor volumes. Each dot
represents the volumes of one patient. The dotted diagonal in (C,E) indicates the identity line. The bias is plotted as solid
green line with 95% CI as dotted green lines and the limits of agreement as dotted red lines in (D,F).

This indicates excellent agreement, consistency, and equivalence in native and nor-
malized tumor volume measurements between the automated and manual segmentations.

3.2.3. Multifocality and Number of Foci

Multifocality was identified in 320 (20.1%) patients for automated segmentations and
in 374 (23.4%) for manual segmentations, as listed in Table 4. The observed multifocal-
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ity difference was statistically different from zero (odds ratio 0.51, 95% CI: 0.37 to 0.72;
p-value < 0.0001) and statistically equivalent to zero (95% CI: 0.010 to 0.058; Z = −4.54,
p-value < 0.0001). The concordance was 89.5%.

Table 4. Contingency table of multifocality between automated and manual segmentations.

Multifocality by Automated Segmentation

Multifocality by Manual
Segmentation no yes subtotal

no 1165 57 1222
yes 111 263 374

subtotal 1276 320 1596

The number of foci as determined by automated and manual segmentations is listed
in Table 5. The observed number of foci was statistically different (Friedman chi-squared =
40.3, p-value < 0.0001). The concordance was 83.8%.

Table 5. Contingency table of multifocality between automated and manual segmentations.

Number of Foci by Automated Segmentation

Number of Foci by Manual
Segmentation 0 1 2 3 4 5 subtotal

0 2 1 0 0 0 0 3
1 13 1149 52 5 0 0 1219
2 4 86 148 16 1 0 255
3 0 19 32 36 2 0 89
4 0 1 8 7 3 1 20
5 0 1 2 2 2 0 7
6 0 0 0 0 1 0 1
7 0 0 0 0 0 1 1

11 0 0 0 0 0 1 1

subtotal 19 1257 242 66 9 3 1596

This indicates good agreement and equivalence in multifocality, but not in the number
of foci between the automated and manual segmentations.

3.2.4. Location Profile of Cortical Parcels

The location profiles of the 96 cortical parcels from Desikan’s brain parcellation for
the patient population are shown in Figure 3A,B according to the manual and automated
segmentations. The well-known preferred locations of glioblastoma are apparent, and the
incidence profiles of cortical involvement are almost identical between the segmentation
methods. The correlation coefficient of the number of patients with parcel involvement as
displayed in Figure 3C was 0.999 (95% CI: 0.999–0.999).

This indicates excellent agreement.
The location profiles of the 400 cortical parcels converging into 17 network classes

from Schaefer’s brain parcellation for the patient population are shown in Figure 4A,B for
the manual and automated segmentations. The incidence profiles of cortical involvement
are almost identical between the segmentation methods. The correlation coefficient of the
number of patients with parcel involvement as displayed in Figure 4C was 0.998 (95%
CI: 0.998–0.999).
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Figure 3. Comparison of tumor location profiles of cortical structures between (A) automated and (B) manual segmenta-
tions in Desikan’s brain parcellation. In the circular bar plots, each bar represents one parcel from the Desikan’s brain 
parcellation categorized by lobe. Abbreviations are referring to anatomical parcels as detailed in the legend. The height of 
a bar represents the percentage of patients, indicated in grey, with tumor involvement in a parcel. The width of a bar 
corresponds with the relative volume of a parcel. (C) Correlation plot between the number of patients with parcel involve-
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Figure 3. Comparison of tumor location profiles of cortical structures between (A) automated and (B) manual segmentations
in Desikan’s brain parcellation. In the circular bar plots, each bar represents one parcel from the Desikan’s brain parcellation
categorized by lobe. Abbreviations are referring to anatomical parcels as detailed in the legend. The height of a bar
represents the percentage of patients, indicated in grey, with tumor involvement in a parcel. The width of a bar corresponds
with the relative volume of a parcel. (C) Correlation plot between the number of patients with parcel involvement between
the manual and automated segmentations. The dotted diagonal indicates the identity line.
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Figure 4. Comparison of tumor location profiles of cortical structures between (A) automated and (B) manual segmentations
in Schaefer’s brain parcellation. In the circular bar plots, each bar represents one network class parcel. Abbreviations refer
to classes as detailed in legend. The height of a bar represents the percentage of patients, indicated in grey, with tumor
involvement in a class parcel. The width of a bar corresponds with the relative volume of a parcel. (C) Correlation plot
between the number of patients with parcel involvement between the manual and automated segmentations. The dotted
diagonal indicates the identity line.

This indicates excellent agreement in cortical incidence profiles between the segmen-
tation methods.

3.2.5. Location Profile of Subcortical Structures

The location profiles of 17 white matter tracts in either hemisphere for tumor overlap
were compared for the whole population between the automated and manual segmenta-
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tions in Figure 5A,B, respectively. The incidence profiles of cortical involvement are almost
identical between the segmentation methods. The correlation coefficient of the number of
patients with tract involvement was 0.999 (0.999–1.000), as displayed in Figure 5C.
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Figure 5. Comparison of tumor location profiles of subcortical white matter structures between (A) automated and (B)
manual segmentations. In the circular bar plots, each bar represents one tract or tract segment. Abbreviations refer to
structures as detailed in legend. The height of a bar represents the percentage of patients with tumor involvement in a
structure indicated in grey. The width of a bar corresponds with the relative volume of a structure. (C) Correlation plot
between the number of patients with structure involvement between the manual and automated segmentations. The dotted
diagonal indicates the identity line.

This indicates excellent agreement between the segmentation methods.
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3.2.6. Expected Residual Tumor Volume and Expected Resectability Index

The median (interquartile range) of the expected residual tumor volume was 4.5 (7.2)
mL for automated segmentations and 4.7 (7.5) mL for manual segmentations, which have
a small clinically negligible difference (0.2 mL, 95% CI: 0.2–0.3; p-value < 0.0001), within
the smallest effect size of interest of 2 mL (one-sided test for the upper bound t = −35.6,
df = 1575, p-value < 0.0001 and for the lower bound t = 56.7, df = 1575, p-value < 0.0001).

The median (interquartile range) of the expected resectability index was 0.857 (0.099)
for automated segmentations and 0.849 (0.098) for manual segmentations, which have a
small clinically negligible difference (−0.0025, 95% CI: −0.0035 to −0.0020; p-value < 0.0001),
within the smallest effect size of interest of 0.1 (one-sided test for the upper bound t = −125,
df = 1575, p-value < 0.0001 and for the lower bound t = 112, df = 1575, p-value < 0.0001).

Between automated and manual segmentations, the intraclass coefficient of the ex-
pected residual tumor volumes was 96.5% (95% CI: 96.2–96.8%), and the expected resectabil-
ity index was 94.2% (95% CI: 93.6–94.7%), indicating excellent consistency.

In Figure 6A,C, the expected residual tumor volume and resectability index are plotted,
indicating excellent correlation between the automated and manual segmentations. In
the Bland–Altman plots in Figure 6B,D, a small negligible bias was observed between the
automated and manual segmentations for the expected residual tumor volume (0.5 mL,
95% CI: 0.4–0.5) and for the expected resectability index (−0.005, 95% CI: −0.004 to −0.007).
The limits of agreement were between −2.9 and 3.8 mL for the expected residual tumor
volume and between −0.07 and 0.06 for the expected resectability index.
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Figure 6. Comparison between automated and manual segmentations for (A,B) expected residual tumor volumes and (C,D)
expected resectability index. In the scatterplots (A,C), each dot represents the data of one patient. The diagonal indicates
the identity line. The boxplots display the distributions with median, 25% and 75% quartiles as hinges and 1.5 times the
interquartile distance as whiskers. The Bland–Altman plots (B,D) of the mean of expectations versus the difference between
expectations. Each dot represents one patient. The bias is plotted as solid line with 95% CI as dotted lines. The limits of
agreement are plotted as dashed lines.
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This indicates excellent agreement, consistency, and equivalence in expected residual
tumor volume and resectability index between the segmentation methods.

3.2.7. Tumor Probability Map

The tumor probability maps based on automated and manual segmentations are
provided in Figure 7. The maps were almost identical. Of 1.9 million brain voxels, none
had an incidence difference with a false discovery rate below 20%.

1 
 

 

Figure 7. Tumor probability maps for the automated and manual segmentations. Each voxel represents the tumor incidence
in the study population with false discovery rates of the difference between the incidences, as specified in the legend.

This indicates excellent tumor probability map agreement between the segmenta-
tion methods.

3.3. Examples of Disagreement between Manual and Automated Segmentations

From inspection of the cases that showed lower agreement between automated and
manual segmentations, four categories of disagreement emerged, as demonstrated in
Figure 8: (i) false negative cystic tumor portions in the automated segmentations; (ii) false
negative enhancing tumor volume, typically satellite lesions missed by the automated
segmentation; (iii) mismatch in inclusion of nonenhancing tumor portions; and (iv) false
positive vasculature structures or choroidal plexus, mistaken for a tumor.
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Figure 8. Examples of disagreement between manual and automated segmentation. (A) The automated and manual
segmentation both included the tumor cyst with enhancing rim, but the automated segmentation did not include the
cyst without enhancing rim nor some of the solid tumor extensions, as examples of false negative cyst detection. (B) The
automated segmentation did not include the satellite lesion, as example of false negative enhancing tumor component.
(C) The manual segmentation included tissue as tumor portions, whereas the automated segmentation did not, as example
of either false positive inclusion of nonenhancing tissue by the manual segmentation or false negative exclusion of
nonenhancing tumor exclusion by the automated segmentation. (D) Conversely, the manual segmentation excluded tissue
from the tumor compartment, whereas the automated segmentation included this tissue, as example of either false negative
exclusion of nonenhancing tissue by the manual segmentation or false positive inclusion of nonenhancing tumor exclusion
by the automated segmentation. (E) The manual segmentation included a vascular structure, as example of a false positive
vasculature structure. (F) Conversely, the automated segmentation included a vascular structure indicated by the yellow
arrow, as another example of a false positive finding.

3.4. GSI-RADS Software and Standard Report

An example of the generated output is shown in Figure 9 The numerical results are
displayed as text in a window and can be exported in csv file format.
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Figure 9. Illustration of the GSI-RADS software and standard report. At the left, the standard report is displayed in text
format. At the top right, the patient MRI scan and the patient MRI scan with overlayed automated tumor segmentation are
displayed, and at the bottom right, the standard brain space and the registered patient MRI scan with overlayed automated
tumor segmentation in standard brain space are demonstrated.

4. Discussion

The main finding of this study is that automated segmentations are in excellent agree-
ment with manual segmentations regarding extracted tumor features, such as laterality,
tumor volume, multifocality, location profiles of cortical parcels and subcortical structures,
resectability, and tumor probability maps, which are potentially relevant for neurosurgical
planning and reporting. This agreement supports at least equal validity of automated
segmentations for these purposes. The generation of automated segmentations is more
rapid and more reproducible than manual segmentations, as previously demonstrated [27].
We propose to substitute manual delineations with automated segmentation methods as
standard in reports of patients with glioblastoma. To facilitate the distribution of these
standard methods, we provide GSI-RADS as software to extract the most relevant tumor
features from an MR scan, consisting of tumor laterality, volume, multifocality, location
profiles of cortical and subcortical involvement, and resectability.

The use of a uniform method by the neurosurgical community to delineate a tumor
and to extract tumor features would be an important step towards standardization across
studies and between neurosurgical teams. A suitable segmentation method for neurosur-
gical use has several requirements: the method should be user friendly, rapid, scalable,
accurate, reproducible, affordable, and valid [67]. The present software module is designed
to minimize user interaction to import the DICOM scan. The processing duration of the
automated method is a fraction of the manual method, which typically takes 30 min per
patient [27], deterring to scale to cohorts larger than a few hundred patients. In absence
of a ground truth for the exact tumor location, the accuracy of either method remains
undetermined. Histopathological and molecular determination of tumor presence based
on detailed multiregion sampling would theoretically be the ultimate ground truth [68].
This is infeasible for a patient cohort for obvious reasons. A second-best ground truth
is postmortem investigation, although this would restrict a correlation to a recent last
scan, and results may not extrapolate to the early stage of disease. An alternative ground
truth could be an ensemble of segmentations by multiple expert raters, but this takes
considerable time and expense restricted to a limited numbers of patients [69]. Therefore,
we took a pragmatic approach and with equivalence between the segmentation methods,
the question on the better method can remain unanswered. Automated segmentations are
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entirely reproducible and free, providing segmentations that can be updated through batch
processing, whereas human raters are subject to disagreement between and within raters,
yielding unreproducible data from a task that is not trivial in time and expense. In this
study, we demonstrate that automated segmentations are equivalent to manual segmenta-
tions regarding neurosurgical tumor characteristics, hence they are equally valid. Either
segmentation method may yield questionable results in a small subset of atypical tumors,
characterized by faint contrast enhancement with large nonenhancing tumor portions,
large cysts, or image artefacts. In the absence of a ground truth, we would argue that the re-
producibility of an automated segmentation is preferable over arduous manual assessment,
even in such less well-defined cases. Likewise, a pragmatic and reproducible standard for
tumor volume, focality, location, and resectability based on automated segmentation is
preferable over manual delineation.

Our finding that an automated processing by a ‘machine’ can replace a tedious and
error-prone task by a ‘human’ adds to an already long list [70–74]. From this perspective,
our findings are unsurprising and fit in the development of successful implementations of
processes automated by deep learning.

Thus far, no other applications have been developed to extract tumor characteristics
for use in glioblastoma surgery, although several applications were developed to segment
the tumor in scans. The Brain Tumor Image Analysis tool (BraTumIA) has been developed
to segment three brain tumor compartments using four scan sequences [33,75] and has
been shown to have good agreement with manual tumor volumes on preoperative scans.
The Pearson’s correlation coefficient between manual and BraTumIA tumor volumes was
0.8 based on 19 patients [75] and 0.88 based on 58 patients [76], albeit with a systematic
overestimation. In addition, the BraTS challenge has been held yearly since 2012, which
aims to improve disease diagnosis, treatment planning, monitoring, and clinical trials by
means of reliable tumor segmentation. Participants have applied more than 200 models
over the years. Many models were updated versions of previous submissions. As far
as we are aware, none of these models has been used to generate tumor characteristics
for neurosurgical practice. Therefore, the quest for the best performance in a common
dataset by ranking of Dice score is not necessarily representative for clinical practice.
In this study, we sought to address whether automation could replace manual labor
without compromising validity in terms of tumor features and to make the software readily
available for others to use and validate further, both clinically and technically. Future
improvements of automated methods can be easily integrated in updated software.

A strength of this study is good external validity given the mixture of institutions,
scanners, scan protocols, and patients. Until standardized scan acquisition protocols are
implemented in neuro-oncological care [77], automated segmentation methods should
resolve this practice variation. Another strength is the relatively large dataset for training
the automated method. A limitation is that we used manual segmentations from one
trained rater per tumor, although this probably represents current practice in neurosurgical
reports of tumor characteristics.

A practical implication is that standard reports for glioblastoma surgery can now be
generated by GSI-RADS. Obviously, improved patient outcomes cannot be expected from
better reporting in itself. Indirectly, improved outcomes may result from more accurate
data-driven decisions on the use of preoperative techniques such as DTI-based tractog-
raphy, functional MRI, transcranial stimulation, and intraoperative stimulation mapping.
Another indirect effect may be the facilitation of consultation between neurosurgeons and
teams and possibly in referral patterns by better recognition of complex surgical cases
regarding tumor location and eloquence. An example would be the identification of a more
complex tumor near the arcuate fascicle, for instance, by a lower expected resectability in-
dex and infiltration of this tract, indicating additional preoperative diagnostics to detail the
relation between the tumor and the tract and the use of intraoperative stimulation mapping
to safely maximize tumor removal. As such, the automated methods hold potential for
development of a quantitative standard for eloquence. Reliable definitions of pretreatment
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tumor characteristics from MR scans may also facilitate less biased comparisons across
institutions, studies, or quality registries. Furthermore, prognostic information, surgical
treatment evaluation, and response assessment may indirectly improve the risk stratifica-
tion of patient cohorts. Finally, the standardized reports could speed up the learning curve
and serve in the education and training of neurosurgeons.

In future efforts, several directions are important to explore. The automated segmen-
tations can be extended to other pathology, such as lower-grade nonenhancing glioma,
brain metastasis, and meningioma. Alternative automated methods can be benchmarked
against the current results. The presented automated method can be trained with data from
additional patients and institutions. New tumor features will be added to the standard
report, such as different aspects of multifocality and the infiltration and disconnection of
white matter pathways. These new measures should be compared with patient outcomes for
evaluation of their clinical use [46]. This may, for instance, result in a quantitative assessment
of risk for surgical complications and risk for early tumor progression. Other tumor com-
partments can be included, such as the T2/FLAIR hyperintense region, necrotic or ischemic
tissue, hemorrhage, cyst fluid, and ultimately molecular heterogeneity and metabolic activ-
ity. In addition, reliable tumor segmentations over time and at different stages of disease
would be instrumental to provide standardized reports of postsurgical evaluation and
treatment response assessment. Finally, distribution of the software should be available for
multiple platforms and environments, such as a standalone web-based application.

5. Conclusions

Automated segmentations are in excellent agreement with manual segmentations
and are practically equivalent regarding tumor features that are potentially relevant for
neurosurgical purposes. A standard GSI-RADS report is proposed for these tumor features,
including the laterality, volume, multifocality, location, and resectability (https://github.
com/SINTEFMedtek/GSI-RADS, accessed on 3 June 2021).
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