603 research outputs found
Instability of Anisotropic Fermi Surfaces in Two Dimensions
The effect of strong anisotropy on the Fermi line of a system of correlated
electrons is studied in two space dimensions, using renormalization group
techniques. Inflection points change the scaling exponents of the couplings,
enhancing the instabilities of the system. They increase the critical dimension
for non Fermi liquid behavior, from 1 to 3/2. Assuming that, in the absence of
nesting, the dominant instability is towards a superconducting ground state,
simple rules to discern between d-wave and extended s-wave symmetry of the
order parameter are given.Comment: 5 pages, revte
Nonthermal Radiation from Type Ia Supernova Remnants
We present calculations of expected continuum emissions from Sedov-Taylor
phase Type Ia supernova remnants (SNRs), using the energy spectra of cosmic ray
(CR) electrons and protons from nonlinear diffusive shock acceleration (DSA)
simulations. A new, general-purpose radiative process code, Cosmicp, was
employed to calculate the radiation expected from CR electrons and protons and
their secondary products. These radio, X-ray and gamma-ray emissions are
generally consistent with current observations of Type Ia SNRs. The emissions
from electrons in these models dominate the radio through X-ray bands. Decays
of \pi^0 s from p-p collisions mostly dominate the gamma-ray range, although
for a hot, low density ISM case (n_{ISM}=0.003 cm^{-3}), the pion decay
contribution is reduced sufficiently to reveal the inverse Compton contribution
to TeV gamma-rays. In addition, we present simple scalings for the contributing
emission processes to allow a crude exploration of model parameter space,
enabling these results to be used more broadly. We also discuss the radial
surface brightness profiles expected for these model SNRs in the X-ray and
gamma-ray bands.Comment: 37 pages, 7 figures, accepted in MNRA
Material-specific gap function in the high-temperature superconductors
We present theoretical arguments and experimental support for the idea that
high-Tc superconductivity can occur with s-wave, d-wave, or mixed-wave pairing
in the context of a magnetic mechanism. The size and shape of the gap is
different for different materials. The theoretical arguments are based on the
t-J model as derived from the Hubbard model so that it necessarily includes
three-site terms. We argue that this should be the basic minimal model for
high-Tc systems. We analyze this model starting with the dilute limit which can
be solved exactly, passing then to the Cooper problem which is numerically
tractable, then ending with a mean field approach. It is found that the
relative stability of s-wave and d-wave depends on the size and the shape of
the Fermi surface. We identify three striking trends. First, materials with
large next-nearest-neighbor hopping (such as YBa(2)Cu(3)O(7-x)) are nearly pure
d-wave, whereas nearest-neighbor materials (such as La(2-x)Sr(x)CuO(4)) tend to
be more s-wave-like. Second, low hole doping materials tend to be pure d-wave,
but high hole doping leads to s-wave. Finally, the optimum hole doping level
increases as the next-nearest-neighbor hopping increases. We examine the
experimental evidence and find support for this idea that gap function in the
high-temperature superconductors is material-specific.Comment: 20 pages; requires revtex.sty v3.0, epsf.sty; includes 6 EPS figures;
Postscript version also available at
http://lifshitz.physics.wisc.edu/www/koltenbah/papers/gapfunc2.ps . This
version contains an extensive amount of new work including theoretical
background, an additional mean field treatment with new figures, and a more
thorough experimental surve
Hole Doping Evolution of the Quasiparticle Band in Models of Strongly Correlated Electrons for the High-T_c Cuprates
Quantum Monte Carlo (QMC) and Maximum Entropy (ME) techniques are used to
study the spectral function of the one band Hubbard model
in strong coupling including a next-nearest-neighbor electronic hopping with
amplitude . These values of parameters are chosen to improve the
comparison of the Hubbard model with angle-resolved photoemission (ARPES) data
for . A narrow quasiparticle (q.p.) band is observed in the
QMC analysis at the temperature of the simulation , both at and away
from half-filling. Such a narrow band produces a large accumulation of weight
in the density of states at the top of the valence band. As the electronic
density decreases further away from half-filling, the chemical
potential travels through this energy window with a large number of states, and
by it has crossed it entirely. The region near momentum
and in the spectral function is more sensitive to doping
than momenta along the diagonal from to . The evolution with
hole density of the quasiparticle dispersion contains some of the features
observed in recent ARPES data in the underdoped regime. For sufficiently large
hole densities the ``flat'' bands at cross the Fermi energy, a
prediction that could be tested with ARPES techniques applied to overdoped
cuprates. The population of the q.p. band introduces a {\it hidden} density in
the system which produces interesting consequences when the quasiparticles are
assumed to interact through antiferromagnetic fluctuations and studied with the
BCS gap equation formalism. In particular, a region of extended s-wave is found
to compete with d-wave in the overdoped regime, i.e. when the chemical
potential has almost entirely crossed the q.p.Comment: 14 pages, Revtex, with 13 embedded ps figures, submitted to Phys.
Rev. B., minor modifications in the text and in figures 1b, 2b, 3b, 4b, and
6
Stripes in cuprate superconductors: Excitations and dynamic dichotomy
We present a short account of the present experimental situation of stripes
in cuprates followed by a review of our present understanding of their ground
state and excited state properties. Collective modes, the dynamical structure
factor, and the optical conductivity of stripes are computed using the
time-dependent Gutzwiller approximation applied to realistic one band and three
band Hubbard models, and are found to be in excellent agreement with
experiment. On the other hand, experiments like angle-resolved photoemission
and scanning tunneling microscopy show the coexistence of stripes at high
energies with Fermi liquid quasiparticles at low energies. We show that a
phenomenological model going beyond mean-field can reconcile this dynamic
dichotomy.Comment: 20 pages, 14 figures. Review paper for a Special Issue of Physica C
on "Stripes and Electronic Liquid Crystals in Strongly Correlated Systems
Extreme genetic fragility of the HIV-1 capsid
Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
Measurement of the muon decay spectrum with the ICARUS liquid Argon TPC
Examples are given which prove the ICARUS detector quality through relevant
physics measurements. We study the muon decay energy spectrum from a sample of
stopping muon events acquired during the test run of the ICARUS T600 detector.
This detector allows the spatial reconstruction of the events with fine
granularity, hence, the precise measurement of the range and dE/dx of the muon
with high sampling rate. This information is used to compute the calibration
factors needed for the full calorimetric reconstruction of the events. The
Michel rho parameter is then measured by comparison of the experimental and
Monte Carlo simulated muon decay spectra, obtaining rho = 0.72 +/- 0.06(stat.)
+/- 0.08(syst.). The energy resolution for electrons below ~50 MeV is finally
extracted from the simulated sample, obtaining (Emeas-Emc)/Emc =
11%/sqrt(E[MeV]) + 2%.Comment: 16 pages, 8 figures, LaTex, A4. Some text and 1 figure added. Final
version as accepted for publication in The European Physical Journal
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
A Search for Jet Handedness in Hadronic Decays
We have searched for signatures of polarization in hadronic jets from decays using the ``jet handedness'' method. The polar angle
asymmetry induced by the high SLC electron-beam polarization was used to
separate quark jets from antiquark jets, expected to be left- and
right-polarized, respectively. We find no evidence for jet handedness in our
global sample or in a sample of light quark jets and we set upper limits at the
95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing
power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure
An initial evaluation of newly proposed biomarker of zinc status in humans - linoleic acid: dihomo-y-linolenic acid (LA:DGLA) ratio
Background: Zinc is an essential micronutrient for humans with important physiological functions. A sensitive and specific biomarker for assessing Zn status is still needed. Objective: The major aim of this study was to examine if the changes in the content of plasma phospholipid LA, DGLA and LA: DGLA ratio can be used to efficiently predict the dietary Zn intake and plasma Zn status of humans. Methods: The study was performed on healthy human volunteers, 25-55 years of age. The dietary Zn intake was assessed using 24 h recall questionnaires. Plasma phospholipid fatty acid analysis was done by gas chromatography, and plasma analysis of minerals by atomic absorption spectrometry. Biochemical, anthropometrical and hematological parameters were assessed. Results: No significant relationship was found between the dietary and plasma zinc status (r = 0.07; p = 0.6). There was a statistically significant correlation between DGLA and plasma Zn (r = 0.39, p = 0.00). No relationship was observed between the linoleic acid and plasma Zn, while there was a significant negative correlation between LA: DGLA ratio and plasma Zn status (r = 0.35, p = 0.01). Similarly, there were statistically significant difference in DGLA status (p = 0.004) and LA: DGLA ratio (p = 0.042) between the Zn formed groups. Conclusions: This study is an initial step in evaluating LA: DGLA ratio as a biomarker of Zn status in humans. The results are encouraging as they show that concentration of DGLA is decreased and LA: DGLA ratio increased in people with lower dietary Zn intake. However, additional studies are needed to fully examine the sensitivity of this biomarker
- …