336 research outputs found

    Ferromagnetic quantum phase transition in Sr1x_{1-x}Cax_xRuO3_3 thin films

    Get PDF
    The ferromagnetic quantum phase transition in the perovskite ruthenate Sr1x_{1-x}Cax_xRuO3_3 is studied by low-temperature magnetization and electrical resistivity measurements on thin films. The films were grown epitaxially on SrTiO3_3 substrates using metalorganic aerosol deposition and characterized by X-ray diffraction and room temperature scanning tunneling microscopy. High residual resistivity ratios of 29 and 16 for x=0x=0 and x=1x=1, respectively, prove the high quality of the investigated samples. We observe a continuous suppression of the ferromagnetic Curie temperature from TC=160T_C=160 K at x=0x=0 towards TC0T_C\to 0 at xc0.8x_c\approx 0.8. The analysis of the electrical resistivity between 2 and 10 K reveals T2T^2 and T3/2T^{3/2} behavior at x0.6x\leq 0.6 and x0.7x\geq 0.7, respectively. For undoped CaRuO3_3, the measurement has been extended down to 60 mK, revealing a crossover to T2T^2 behavior around 2 K, which suggests a Fermi-liquid ground state in this system.Comment: 3 pages, 4 Figures, Manuscript for Proceedings of the International Conference on Quantum Criticality and Novel Phases (QCNP09, Dresden

    Berry Phase in Cuprate Superconductors

    Full text link
    Geometrical Berry phase is recognized as having profound implications for the properties of electronic systems. Over the last decade, Berry phase has been essential to our understanding of new materials, including graphene and topological insulators. The Berry phase can be accessed via its contribution to the phase mismatch in quantum oscillation experiments, where electrons accumulate a phase as they traverse closed cyclotron orbits in momentum space. The high-temperature cuprate superconductors are a class of materials where the Berry phase is thus far unknown despite the large body of existing quantum oscillations data. In this report we present a systematic Berry phase analysis of Shubnikov - de Haas measurements on the hole-doped cuprates YBa2_2Cu3_3Oy_{y}, YBa2_2Cu4_4O8_8, HgBa2_2CuO4+δ_{4 + \delta}, and the electron-doped cuprate Nd2x_{2-x}Cex_xCuO4_4. For the hole-doped materials, a trivial Berry phase of 0 mod 2π2\pi is systematically observed whereas the electron-doped Nd2x_{2-x}Cex_xCuO4_4 exhibits a significant non-zero Berry phase. These observations set constraints on the nature of the high-field normal state of the cuprates and points towards contrasting behaviour between hole-doped and electron-doped materials. We discuss this difference in light of recent developments related to charge density-wave and broken time-reversal symmetry states.Comment: new version with added supplementary informatio

    Bulk evidence for single-gap s-wave superconductivity in the intercalated graphite superconductor C6_6Yb

    Get PDF
    We report measurements of the in-plane electrical resistivity ρ\rho and the thermal conductivity κ\kappa of the intercalated graphite superconductor C6_6Yb to temperatures as low as TcT_c/100. When a field is applied along the c-axis, the residual electronic linear term κ0/T\kappa_0/T evolves in an exponential manner for Hc1<H<Hc2H_{c1} < H < H_{c2}. This activated behaviour establishes the order parameter as unambiguously s-wave, and rules out the possibility of multi-gap or unconventional superconductivity in this system.Comment: 4 pages, 4 figs, submitted to Phys. Rev. Let

    Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor

    Full text link
    In the high temperature cuprate superconductors, the pervasiveness of anomalous electronic transport properties suggests that violation of conventional Fermi liquid behavior is closely tied to superconductivity. In other classes of unconventional superconductors, atypical transport is well correlated with proximity to a quantum critical point, but the relative importance of quantum criticality in the cuprates remains uncertain. Here we identify quantum critical scaling in the electron-doped cuprate material La2-xCexCuO4 with a line of quantum critical points that surrounds the superconducting phase as a function of magnetic field and charge doping. This zero-temperature phase boundary, which delineates a metallic Fermi liquid regime from an extended non-Fermi liquid ground state, closely follows the upper critical field of the overdoped superconducting phase and gives rise to an expanse of distinct non Fermi liquid behavior at finite temperatures. Together with signatures of two distinct flavors of quantum fluctuations, this suggests that quantum criticality plays a significant role in shaping the anomalous properties of the cuprate phase diagram.Comment: 16 pages, 3 figures + supplementary materia

    Quantum oscillations in YBa2Cu3O6+δ\mathrm{YBa_{2}Cu_{3}O_{6+\delta}} from an incommensurate dd-density wave order

    Full text link
    We consider quantum oscillation experiments in YBa2Cu3O6+δ\mathrm{YBa_{2}Cu_{3}O_{6+\delta}} from the perspective of an incommensurate Fermi surface reconstruction using an exact transfer matrix method and the Pichard-Landauer formula for the conductivity. The specific density wave order considered is a period-8 dd-density wave in which the current density is unidirectionally modulated. The current modulation is also naturally accompanied by a period-4 site charge modulation in the same direction, which is consistent with recent magnetic resonance measurements. In principle Landau theory also allows for a period-4 bond charge modulation, which is not discussed, but should be simple to incorporate in the future. This scenario leads to a natural, but not a unique, explanation of why only oscillations from a single electron pocket is observed, and a hole pocket of roughly twice the frequency as dictated by two-fold commensurate order, and the corresponding Luttinger sum rule, is not observed. However, it is possible that even higher magnetic fields will reveal a hole pocket of half the frequency of the electron pocket or smaller. This may be at the borderline of achievable high field measurements because at least a few complete oscillations have to be clearly resolved.Comment: 8 pages, 7 figure

    Onset of a boson mode at superconducting critical point of underdoped YBa2Cu3Oy

    Full text link
    The thermal conductivity κ\kappa of underdoped \Y was measured in the T0T \to 0 limit as a function of hole concentration pp across the superconducting critical point at pSCp_{SC} = 5.0%. ``Time doping'' was used to resolve the evolution of bosonic and fermionic contributions with high accuracy. For ppSCp \leqslant p_{SC}, we observe an additional T3T^3 contribution to κ\kappa which we attribute to the boson excitations of a phase with long-range spin or charge order. Fermionic transport, manifest as a linear term in κ\kappa, is seen to persist unaltered through pSCp_{SC}, showing that the state just below pSCp_{SC} is a thermal metal. In this state, the electrical resistivity varies as log(1/T)(1/T) and the Wiedemann-Franz law is violated

    Quantum critical point for stripe order: An organizing principle of cuprate superconductivity

    Full text link
    A spin density-wave quantum critical point (QCP) is the central organizing principle of organic, iron-pnictide, heavy-fermion and electron-doped cuprate superconductors. It accounts for the superconducting Tc dome, the non-Fermi-liquid resistivity, and the Fermi-surface reconstruction. Outside the magnetically ordered phase above the QCP, scattering and pairing decrease in parallel as the system moves away from the QCP. Here we argue that a similar scenario, based on a stripe-order QCP, is a central organizing principle of hole-doped cuprate superconductors. Key properties of Eu-LSCO, Nd-LSCO and YBCO are naturally unified, including stripe order itself, its QCP, Fermi-surface reconstruction, the linear-T resistivity, and the nematic character of the pseudogap phase.Comment: Written for a special issue of Physica C on "Stripes and electronic liquid crystal
    corecore