We present calculations of expected continuum emissions from Sedov-Taylor
phase Type Ia supernova remnants (SNRs), using the energy spectra of cosmic ray
(CR) electrons and protons from nonlinear diffusive shock acceleration (DSA)
simulations. A new, general-purpose radiative process code, Cosmicp, was
employed to calculate the radiation expected from CR electrons and protons and
their secondary products. These radio, X-ray and gamma-ray emissions are
generally consistent with current observations of Type Ia SNRs. The emissions
from electrons in these models dominate the radio through X-ray bands. Decays
of \pi^0 s from p-p collisions mostly dominate the gamma-ray range, although
for a hot, low density ISM case (n_{ISM}=0.003 cm^{-3}), the pion decay
contribution is reduced sufficiently to reveal the inverse Compton contribution
to TeV gamma-rays. In addition, we present simple scalings for the contributing
emission processes to allow a crude exploration of model parameter space,
enabling these results to be used more broadly. We also discuss the radial
surface brightness profiles expected for these model SNRs in the X-ray and
gamma-ray bands.Comment: 37 pages, 7 figures, accepted in MNRA