9 research outputs found

    Human intellectual disability genes form conserved functional modules in Drosophila

    Get PDF
    Contains fulltext : 124936.pdf (publisher's version ) (Open Access)Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules

    Genetic studies in intellectual disability and related disorders

    No full text
    Genetic factors play a major part in intellectual disability (ID), but genetic studies have been complicated for a long time by the extreme clinical and genetic heterogeneity. Recently, progress has been made using different next-generation sequencing approaches in combination with new functional readout systems. This approach has provided novel insights into the biological pathways underlying ID, improved the diagnostic process and offered new targets for therapy. In this Review, we highlight the insights obtained from recent studies on the role of genetics in ID and its impact on diagnosis, prognosis and therapy. We also discuss the future directions of genetics research for ID and related neurodevelopmental disorders

    Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases

    No full text
    Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 patients and >2,867 controls. We report 91 genes with an excess of de novo mutations or private disruptive mutations in 5.7% of patients, including 38 novel NDD genes. Drosophila functional assays of a subset bolster their involvement in NDDs. We identify 25 genes that show a bias for autism versus intellectual disability and highlight a network associated with high-functioning autism (FSIQ>100). Clinical follow-up for NAA15, KMT5B, and ASH1L reveals novel syndromic and non-syndromic forms of disease

    Of Fighting Flies, Mice, and Men: Are Some of the Molecular and Neuronal Mechanisms of Aggression Universal in the Animal Kingdom?

    No full text

    The Autistic Spectrum Disorders (ASD): From the Clinics to the Molecular Analysis

    No full text

    Brain imaging genetics in ADHD and beyond – Mapping pathways from gene to disorder at different levels of complexity

    No full text
    corecore