85 research outputs found

    Fluorescence studies on new potential antitumoral benzothienopyran-1-ones in solution and in liposomes

    Get PDF
    Fluorescence properties of four new potential antitumoral compounds, 3-arylbenzothieno[2,3-c]pyran-1-ones, were studied in solution and in lipid membranes of dipalmitoyl phosphatidylcholine (DPPC), egg yolk phosphatidylcholine (Egg-PC) and dioctadecyldimethylammonium bromide (DODAB). The 3-(4-methoxyphenyl)benzothieno[2,3-c]pyran-1-one (1c) exhibits the higher fluorescence quantum yields in all solvents studied. All compounds present a solvent sensitive emission, with significant red shifts in polar solvents for the methoxylated compounds. The results point to an ICT character of the excited state, more pronounced for compound 1c. Fluorescence (steady-state) anisotropy measurements of the compounds incorporated in liposomes of DPPC, DODAB and Egg-PC indicate that all compounds have two different locations, one due to a deep penetration in the lipid membrane and another corresponding to a more hydrated environment. In general, the methoxylated compounds prefer hydrated environments inside the liposomes. The 3-(4- fluorophenyl)benzothieno[2,3-c]pyran-1-one (1a) clearly prefers a hydrated environment, with some molecules located at the outer part of the liposome interface. On the contrary, the preferential location of 3-(2-fluorophenyl)benzothieno[2,3-c]pyran-1-one (1b) is in the region of lipid hydrophobic tails. Compounds with a planar geometry (1a and 1c) have higher mobility in the lipid membranes when phase transition occurs.Portugal and FEDER (Fundo Europeu de Desenvolvimento Regional), for financial support through Centro de Física (CFUM) and Centro de Química (CQ-UM) of University of Minho and through the Project PTDC/QUI/81238/2006. M.S.D. Carvalho and R.C. Calhelha acknowledge FCT for their PhD grants SFRH/BD/47052/2008 and SFRH/BD/29274/2006, respectively.Fundação para a Ciência e a Tecnologia (FCT

    Inhibition of microvesiculation sensitizes prostate cancer cells to chemotherapy and reduces docetaxel dose required to limit tumor growth in vivo

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Microvesicles shed from cells carry constituents of the cell cytoplasm, including, of importance in multidrug resistance to cancer chemotherapy, drugs that the tumor cell attempts to efflux. To see whether such drugs could be used at lower concentrations with the same efficacy, it was first shown that microvesiculation of prostate cancer (PCa) cells, PC3, could be inhibited pharmacologically with calpeptin (calpain inhibitor) and by siRNA (CAPNS1). In cells treated with docetaxel (DTX), this inhibition resulted in a third-fold increase in intracellular concentrations of DTX. As a result, 20-fold lower concentrations of DTX (5 nM) could be used, in the presence of calpeptin (20μM) inducing the same degree of apoptosis after 48 h in PC3 cells, as 100 nM of DTX alone. Inhibition of microvesiculation similarly improved combination chemotherapy (DTX and methotrexate). In a mouse xenograft model of PCa, DTX (0.1 mg/kg) together with calpeptin (10 mg/kg), administered i.p., significantly reduced tumor volumes compared to DTX alone (0.1 mg/kg) and brought about the same reductions in tumor growth as 10 mg/kg of DTX alone. As well as further reducing vascularization, it also increased apoptosis and reduced proliferation of PC3 cells in tumor xenografts.Peer reviewe

    Reactivity and Dynamics at Liquid Interfaces

    Full text link

    Solvent Effects

    No full text
    corecore