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Abstract Fluorescence properties of four new potential
antitumoral compounds, 3-arylbenzothieno[2,3-c]pyran-1-
ones, were studied in solution and in lipid membranes of
dipalmitoyl phosphatidylcholine (DPPC), egg yolk phos-
phatidylcholine (Egg-PC) and dioctadecyldimethylammonium
bromide (DODAB). The 3-(4-methoxyphenyl)benzothieno
[2,3-c]pyran-1-one (1c) exhibits the higher fluorescence
quantum yields in all solvents studied. All compounds present
a solvent sensitive emission, with significant red shifts in polar
solvents for the methoxylated compounds. The results point to
an ICT character of the excited state, more pronounced for
compound 1c. Fluorescence (steady-state) anisotropy measure-
ments of the compounds incorporated in liposomes of DPPC,
DODAB and Egg-PC indicate that all compounds have two
different locations, one due to a deep penetration in the lipid
membrane and another corresponding to a more hydrated
environment. In general, the methoxylated compounds prefer
hydrated environments inside the liposomes. The 3-(4-
fluorophenyl)benzothieno[2,3-c]pyran-1-one (1a) clearly pre-
fers a hydrated environment, with some molecules located at
the outer part of the liposome interface. On the contrary, the
preferential location of 3-(2-fluorophenyl)benzothieno[2,3-c]
pyran-1-one (1b) is in the region of lipid hydrophobic tails.
Compounds with a planar geometry (1a and 1c) have higher
mobility in the lipid membranes when phase transition occurs.

Keywords Benzothienopyran-1-ones . Antitumoral
compounds . Liposomes . Fluorescence anisotropy

Abbreviations
DPPC Dipalmitoyl phosphatidylcholine
DODAB Dioctadecyldimethylammonium bromide
Egg-PC Egg yolk phosphatidylcholine
PC Phosphatidylcholine

Introduction

Our research group has been interested in the synthesis and in
the photophysical behavior, in solution and in lipidmembranes,
of novel heteroaromatic biological active compounds [1–3].

Recently, some of us have described the synthesis of new
3-(aryl)benzothieno[2,3-c]pyran-1-ones from 3-bromobenzo
[b]thiophene-2-carboxylic acid and different arylphenylace-
tylenes [4] (compounds 1a–c, Fig. 1). Compound 1d, with a
methoxy group in the ortho position relative to the pyranone
ring (Fig. 1) was synthesized in this work (Scheme 1) for
comparison, and the synthesis is described below.

Compounds 1a–c were evaluated for their capacity to
inhibit the in vitro growth of three human tumor cell lines,
MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell
lung cancer) and SF-268 (CNS cancer). Compound 1b was
shown to be the most potent against the three cell lines
tested, presenting low GI50 (the lowest concentration causing
50% of the cell growth inhibition after a continuous exposure
of 48 h) values (12–19 μM) [4].

These results suggested us to perform fluorescence studies
of compounds 1a–d incorporated in liposomes. The photo-
physical properties in solution and in lipid vesicles of DPPC
(dipalmitoyl phosphatidylcholine), Egg-PC (egg yolk phos-
phatidylcholine) and of the cationic lipid DODAB (diocta-
decyldimethylammonium bromide) were studied. The
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phospholipids DPPC and phosphatidylcholine (from egg
yolk) are neutral components of biological membranes,
while cationic liposomes based in DODAB have been used
as vehicles for DNA transfection and drug delivery [5–7].
Fluorescence (steady-state) anisotropy measurements were
also performed to obtain further information about the
location of these compounds in lipid membranes.

Experimental

Synthesis

General The melting point (°C) was determined on a
SMP3 Stuart apparatus. 1H and 13C NMR spectra were
recorded on a Bruker Avance II+ at 400 and 100.6 MHz,
respectively. Chemical shifts (δ) are given in ppm. MS (EI)
spectrum and HRMS on the M+ were recorded by the mass
spectrometry service of the University of Vigo, Spain.
Petroleum ether refers to the boiling range 40–60 °C.

3-(2-methoxyphenyl)benzothieno[2,3-c]pyran-1-one (1d) 3-
Bromo-benzo[b]thiophene-2-carboxylic acid (100 mg,
0.390 mmol), 2-methoxyphenylacetylene (1.2 equiv.)
PdCl2(PPh3)2 (5 mol%), CuI (3 mol%), and NEt3 (3 equiv.)
were added under argon to dry DMF (2 mL) in a dry
Schlenk tube and the mixture was heated for 2 h at 100 °C.
After cooling, water (5 mL) and ethyl acetate (5 mL) were
added and the phases were separated. The aqueous phase

was then extracted with more ethyl acetate (3×5 mL) and
the organic phases were collected, dried (MgSO4) and
filtered. The solvent removal gave a solid which was
crystallized from CH2Cl2/petroleum ether affording 1d as a
beige solid (95 mg, 80%), m.p. 191–193 °C. 1H-NMR
(400 MHz, DMSO-d6) δ 3.98 (3H, s, OMe), 7.11–7.15 (1H,
m, ArH), 7.23–7.25 (1H, m, ArH), 7.48–7.53 (1H, m,
ArH), 7.62–7.66 (1H, m, ArH), 7.70–7.74 (1H, m, ArH),
7.80–7.83 (1H, m, ArH), 7.99 (1H, s, 4-H), 8.21–8.24 (1H, m,
ArH), 8.43–8.45 (1H, m, ArH) ppm. 13C-NMR (100.6 MHz,
DMSO-d6) δ 55.30 (OCH3), 101.83 (CH), 112.26 (CH),
120.02 (C), 120.73 (CH), 121.20 (C), 123.92 (CH), 124.69
(CH), 125.79 (CH), 128.63 (CH), 129.61 (CH), 131.69
(CH), 134.10 (C), 142.46 (C), 144.07 (C), 154.26 (C),
157.06 (C), 158.08 (C) ppm. MS (EI): m/z 308 (M+, 100),
280 (M+-28, 59). HRMS M+ calc. for C18H12O3S: 308.0507,
found: 308.0508.

Spectroscopic studies

Materials and methods

All the solutions were prepared using spectroscopic grade
solvents and ultrapure water (Milli-Q grade). 1,2-Dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC) and 1,2-Diacyl-sn-
glycero-3-phosphocholine from egg yolk (Egg-PC), from
Sigma-Aldrich, and dioctadecyldimethylammonium bromide
(DODAB), from Tokyo Kasei, were used as received (lipid
structures are shown below).
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For Egg-PC vesicles preparation, defined volumes of a
stock solution of lipid (34.5 mM) and compound (0.2 mM)
in ethanol were injected together, under vigorous stirring, to
an aqueous buffer solution (10 mM Tris, pH=7.4), at room
temperature. A similar procedure was adopted for DPPC
and DODAB liposomes, but the injection of the required
amounts of stock solutions of lipid (50 mM for DPPC and
20 mM for DODAB) and compound in ethanol was done at
60 °C, well above the melting transition temperature of
both lipids, ca. 41 °C for DPPC [8] and 45 °C for DODAB
[9]. In all cases, the final lipid concentration was 1 mM,
with compounds 1a–d/lipid molar ratio of 1:500.

Spectroscopic measurements

Absorption spectra were recorded in a Shimadzu UV-
3101PC UV-Vis-NIR spectrophotometer. Fluorescence
measurements were performed using a Spex Fluorolog 3
spectrofluorimeter, equipped with double monochromators
in both excitation and emission, Glan-Thompson polarizers
and a temperature-controllable cuvette holder. Fluorescence
spectra were corrected for the instrumental response of the
system.

For fluorescence quantum yield determination, the
solutions were previously bubbled for 20 min with
ultrapure nitrogen. The fluorescence quantum yields (Φs)
were determined using the standard method (Eq. 1) [10,
11]. Anthracene in ethanol (Φr=0.27 at 25 °C [12]) and
quinine sulfate in 0.05 M H2SO4 (Φr=0.546 at 25 °C [13,
14]) were used as references.

Φs ¼ ArFsn2s
AsFrn2r

Φr ð1Þ

where A is the absorbance at the excitation wavelength, F
the integrated emission area and n the refraction index of
the solvents used. Subscripts refer to the reference (r) or
sample (s) compound.

The steady-state fluorescence anisotropy, r, is calculated
by

r ¼ IVV � G IVH
IVV þ 2G IVH

ð2Þ

where IVV and IVH are the intensities of the emission spectra
obtained with vertical and horizontal polarization, respec-
tively (for vertically polarized excitation light), and G ¼
IHV=IHH is the instrument correction factor, where IHV and
IHH are the emission intensities obtained with vertical and
horizontal polarization (for horizontally polarized excitation
light).

Data analysis

Solvatochromic shifts were described by the Lippert-
Mataga Eq. (3), which relates the energy difference
between absorption and emission maxima to the orientation
polarizability, [15, 16]

nabs � nfl ¼ 1

4p "0

2Δm2

hcR3
Δf þ const ð3Þ

where nabs is the wavenumber of maximum absorption, nfl
is the wavenumber of maximum emission, Δμ = μe – μg is
the difference in the dipole moment of solute molecule
between excited (μe) and ground (μg) states, R is the cavity
radius (considering the fluorophore a point dipole at the
center of a spherical cavity immersed in the homogeneous
solvent), and Δf is the orientation polarizability given by
(Eq. 4):

Δf ¼ "� 1

2"þ 1
� n2 � 1

2n2 þ 1
; ð4Þ

where ε is the static dielectric constant and n the refractive
index of the solvent.

Fluorescence anisotropy components (IVV and G∙IVH)
were globally fitted to two sums of lognormal components
(Eqs. 5 and 6) [17], each sum characterized by a fitted
anisotropy value,

IVV ¼ P
i

A1 i

l� lmaxð Þ1 iþa1 ið Þ exp �c21 i
� �

exp � 1
2c21 i
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1 i
b
1 i

� �h i2� �
þ

þP
i

A2 i
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� �h i2� �
ð5Þ

G � IVH ¼ P
i

A0
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; ð6Þ
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1b R1= H, R2 = F
1c R1= OMe, R2 = H
1d R1= H, R2 = OMe

Fig. 1 Structure of 3-(aryl)benzothieno[2,3-c]pyran-1-ones
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where A (or A′) is the maximum intensity at wavelength
lmax and the parameters a, b and c are given by [17]

c ¼ ln rð Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þp

b ¼ H r
r2�1 exp c2ð Þ a ¼ H r

r2�1 ð7Þ

where H is the half-width of the band and ρ is the
skewness. The lognormal function sums account for the
vibrational structure of compound spectrum. The compo-
nents (1 and 2) have two different fitted anisotropy values,
r1 and r2, given by

r1 ¼ A1 i � A0
1 i

A1 i þ 2A0
1 i

and r2 ¼ A2 i � A0
2 i

A2 i þ 2A0
2 i

; ð8Þ

due to the additivity law of anisotropy [18],

r ¼
X
i

Ii
Itotal

ri ð9Þ

with

ri ¼ Iið ÞVV � G Iið ÞVH
Iið ÞVV þ 2G Iið ÞVH

: ð10Þ

Therefore,

A0
1 i ¼ A1 i

1� r1
1þ 2r1


 �
and A0

2 i ¼ A2 i
1� r2
1þ 2r2


 �
: ð11Þ

Results and discussion

Synthesis of compound 1d

As referred above, compound 1d was prepared in this work
for comparison with compounds 1a–c which were already
prepared by some of us in a previous work [4], using the
same method (Scheme 1).

Compound 1d was prepared in an excellent yield by a
tandem one-pot Pd/Cu catalyzed Sonogashira reaction of
the 3-bromobenzo[b]thiophene-2-carboxylic acid with the
2-methoxyphenylacetylene followed by an intramolecular
cyclization on the intermediate involving the carboxyl
group and the triple bond [4].

Photophysical properties of compounds 1a-d
in homogeneous solution

The absorption and fluorescence properties of compounds
1a, 1b, 1c and 1d were studied in several solvents. The
maximum absorption (labs) and emission wavelengths
(lem), molar extinction coefficients (ε) and fluorescence
quantum yields (ΦF) of the four compounds are presented
in Table 1. The normalized fluorescence spectra of com-
pounds 1a–d are shown in Fig. 2. Examples of absorption
spectra are displayed as insets.

The effect of solvent in the absorption spectrum of these
compounds is generally small (insets of Fig. 2 and Table 1).
Despite this, a red shift of the lowest energy absorption
maximum can be observed with increasing solvent polarity,
thus indicating that a π→π* transition is involved. The
molar extinction coefficients at absorption maxima are high
(ε > 104 M−1 cm−1), confirming this assumption.

In fluorescence spectra, significantly higher red shifts for
all compounds can be observed from cyclohexane to more
polar solvents, indicating that solvent relaxation after
photoexcitation plays an important role. In polar solvents,
a loss of vibrational structure is also detected (Fig. 2), more
significant for compound 1c, that presents completely non-
structured emission bands in the more polar environments.
This behavior is usually related to an intramolecular charge
transfer (ICT) mechanism and/or to specific solvent effects
[15].

The red shifts in emission are larger for the compounds
with the electron-donating (EDG) OCH3 group, especially for
compound 1c (26 nm from cyclohexane to DMSO).
Compounds 1a and 1b exhibit smaller red shifts, which
may be due to the dual character of the F atom, which is an
EDG by mesomeric effect (+M) and an electron-withdrawing
group (EWG) by inductive effect (-I). A similar behavior
was already observed in tetracyclic lactams previously
obtained by us, bearing this type of substituents [19].

The Lippert-Mataga plots (Eq. 3) for compounds 1a–d
(Fig. 3) display a high linearity for all compounds in the
solvents studied. Therefore, specific solute–solvent inter-
actions like hydrogen bonding are not detectable by
deviations of linearity in the Lippert-Mataga plots.

From ab initio molecular quantum chemistry calculations,
the cavity radius (R) and the ground state dipole moment
(μg) were determined for the four compounds (Table 2),
through an optimized structure provided by GAMESS
software [21], using a RHF/3-21G(d) basis set [22]
(Fig. 4). The optimized geometries show that molecules 1a
and 1c are roughly planar, while in compounds 1b and 1d
the fluorophenyl and the methoxyphenyl groups are out of
the plane of the benzothienopyran-1-one moiety. The excited
state dipole moments, μe, estimated from the Lippert-Mataga
plots (Table 2), point to the presence of an intramolecular
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i) PdCl2(PPh3)2 (5 mol%) CuI (3 mol%), NEt3 (3 equiv.)

1d, 80%

dry DMF
100 oC, 2 h

1.2 equiv

Scheme 1 Synthesis of compound 1d
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charge transfer (ICT) mechanism, especially for compound
1c. Twisted intramolecular charge transfer states (TICT)
usually exhibit higher excited state dipole moments (≥ 20 D)
[23] than those here obtained.

Figure 5 reports the representation of HOMO and
LUMO molecular orbitals for the four compounds. In all

compounds, the HOMO-LUMO transition causes an in-
crease in the electronic density of the O atom of the
pyranone ring, especially in the case of compound 1c. It can
be observed that the HOMO-LUMO transition of com-
pound 1c exhibits a charge transfer from the oxygen atom
of the methoxyphenyl group to the aromatic ring system,

Table 1 Maximum absorption (labs) and emission wavelengths (lem), molar extinction coefficients (ε) and fluorescence quantum yields (ΦF) for
compounds 1a–d in several solvents

Solvent labs/nm (ε/104M−1cm−1) lem/nm ΦF

1a 1b 1c 1d 1a 1b 1c 1d 1a a 1b a 1c b 1d b

Cyclohexane 363 (1.23);
275 (2.03)

361 (1.57);
274 (3.16)

372 (1.70);
283 (2.88)

366 (1.36);
274 (2.57)

418 409 433 422 0.002 0.005 0.006 0.009

Dioxane 365 (1.25);
277 (2.67)

365 (2.17);
277 (4.12)

374 (1.89);
266 (3.03)

367 (1.66);
276 (2.09)

422 415 440 426 0.006 0.013 0.020 0.016

Dichloromethane 366 (1.72);
277 (3.78)

363 (1.46);
276 (3.39)

376 (1.40);
285 (2.75)

371 (1.30);
275 (2.48)

425 417 449 434 0.005 0.014 0.022 0.020

Dimethylformamide 367 (1.36)c 363 (1.40)c 378 (2.06);
286 (2.75)

370 (1.82);
278 (1.73)

427 419 456 437 0.010 0.012 0.039 0.015

Dimethylsulfoxide 369 (1.50)c 363 (1.70)c 381 (2.29);
286 (2.93)

372 (1.51);
279 (1.61)

429 420 459 438 0.012 0.016 0.068 0.030

Acetonitrilo 366 (1.04);
276 (2.06)

360 (1.29);
276 (3.39)

373 (1.23);
282 (2.61)

367 (1.71);
284 (3.41)

425 416 452 433 0.004 0.008 0.021 0.012

Ethanol 366 (1.57);
277 (3.67)

362 (1.30);
275 (2.94)

377 (1.77);
284 (3.63)

370 (1.49);
276 (2.90)

426 418 456 435 0.007 0.012 0.040 0.022

Methanol 367 (1.58);
277 (3.69)

363 (1.09);
275 (2.58)

377 (1.43);
283 (2.69)

370 (1.51);
275 (3.27)

427 420 458 437 0.006 0.012 0.047 0.023

a Relative to anthracene in ethanol (Φr=0.27 [12])
b Relative to quinine sulfate in 0.05 M H2SO4 (Φr=0.546 [13, 14])
c Solvent cut-offs: Dimethylformamide: 275 nm; Dimethylsulfoxide: 270 nm

Fig. 2 Normalized fluorescence
(at peak of maximum emission)
spectra of compounds 1a–d in
several solvents: cyclohexane
(− − −); dioxane (······);
dichloromethane (—);
dimethylformamide (........);
dimethylsulfoxide (− · · −);
acetonitrile (- - - - -); ethanol
(− · − · −); methanol (− · − · − · −).
Insets: Absorption spectra of sol-
utions of compounds 1a–d in
dichloromethane and in ethanol,
as examples. A Compound 1a
(7×10−6 M solutions for fluores-
cence, lexc=360 nm, and 2.4×
10−5 M for absorption); B Com-
pound 1b (4×10−6 M
solutions for fluorescence,
lexc=360 nm, and 2.5×10−5 M
for absorption); C Compound 1c
(4×10−6 M solutions for fluores-
cence, lexc=370 nm, and 2×
10−5 M for absorption); D Com-
pound 1d (4×10−6 M solutions
for fluorescence, lexc=370 nm,
and 2×10−5 M for absorption)
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confirming the ICT character of the excited state. The effect
is significantly lower for compound 1d. Comparing com-
pounds 1a and 1b, the F atom presents higher electronic
density in compound 1a, which decreases slightly upon
HOMO-LUMO transition. It can also be observed that the
carbon atom bound to fluorine decreases its electronic

density upon HOMO-LUMO transition in compound 1a,
the opposite occurring in compound 1b.

All compounds 1a–d present low fluorescence quantum
yields in all solvents (ΦF ≤ 6.8%, Table 1). Fluorescence
quantum yields are very low (ΦF < 2%) for compounds
with a F substituent (1a and 1b). For compounds with a

Compound 
Cavity radius, 

R (Å) 
Ground state dipole 

moment, µg (D) 
Excited state dipole 

moment, µe (D) 

S

O

O

F

 
1a 

5.3 6.1 8.9 

S

O

O

F

 
1b 

5.8 7.6 13.1 

S

O

O

OMe

 
1c 

6.3 7.9 15.8 

S

O

O

OMe

 
1d 

6.1 5.1 10.8 

Table 2 Cavity radius (R) and
ground state dipole moments
(μg), obtained from
theoretical calculations, and
excited state dipole moments
(μe) calculated from the
Lippert-Mataga plots

Fig. 3 Lippert-Mataga plots for
compounds 1a, 1b, 1c and 1d.
A: cyclohexane; B: dioxane;
C: dichloromethane;
D: dimethylsulfoxide;
E: dimethylformamide;
F: ethanol; G: acetonitrile;
H: methanol (values of ε and n
were obtained from ref. [20])
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methoxy substituent (1c and 1d), ΦF values are generally
higher, especially in polar solvents. The low values of
fluorescence quantum yield observed for these compounds
are due to the presence of the S atom in the thiophene ring,
which may promote the intersystem crossing process by
enhancement of spin–orbit coupling interaction [15, 24], as
observed for other molecules which include a thiophene
ring [1, 19]. The expected formation of hydrogen bonds of
compounds 1a–d with protic solvents was not inferred from
deviations of the Lippert-Mataga plots (Fig. 3) and, if they
occur, do not influence the ΦF values in alcohols (Table 1).

Interaction of compounds 1a–d with lipid membranes

Due to their promising antitumoral activity [4], photophysical
studies of compounds 1a–d incorporated in lipid vesicles
were also performed. These experiments are important to
evaluate their location in liposomes pointing to drug delivery
applications.

Different types of lipid molecules, Egg-PC, DPPC and
DODAB, were used for the vesicles preparation. Egg-PC is
a natural phospholipid mixture, where all molecules have
the same polar head group (phosphatidylcholine) but
several hydrocarbon chains, differing in length and degree

of unsaturation. Egg-PC main components are 16:0 PC,
18:0 PC and 18:1 PC [25]. Considering DPPC (16:0 PC)
and DODAB, it is known that at room temperature, both
lipids are in the ordered gel phase, where the hydrocarbon
chains are fully extended and closely packed. Above the
melting transition temperature, 41 °C for DPPC [8] and
45 °C for DODAB [9], these lipids attains the disordered
liquid-crystalline phase.

The emission spectra of compounds 1a–d in lipid
membranes are displayed in Fig. 6. Compound 1a (Fig. 6A)
exhibits a composed spectrum in lipids at the gel phase
(DODAB and DPPC at 25 °C), showing the existence of two
emission bands (with maxima near 420 nm and 438 nm,
Table 3), pointing to the existence of two different locations
of 1a molecules in these rigid lipid membranes. At the liquid-
crystalline phase (both DPPC and DODAB at 55 °C and
Egg-PC at 25 °C), only one emission band is observed, with
very slight differences between the three lipids. The
maximum emission wavelengths in this fluid phase (Table 3)
are similar to the lower energy maximum of the compound in
lipids at the gel phase. A distinct behavior is observed for
compound 1b, where the position and shape of the emission
bands are similar in all lipids either at 25 °C or at 55 °C. A
decrease of the shoulder at the higher energy region is

S 

F

O 

O

1b

S
O

O

F1a

S

O

O

O

1c

S O

O

O

1d

Fig. 4 Optimized structures of compounds 1a, 1b, 1c and 1d (obtained by GAMESS software), with the indication of S, O and F atoms
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observed in DODAB, especially in the fluid phase (Fig. 6B).
The maximum emission wavelengths indicate an environ-
ment of moderate polarity, similar to dioxane and acetonitrile
(Tables 1 and 3). In homogeneous solution, the effect of the
temperature increase in the fluorescence of these compounds
is a ca. 40% reduction and a very small blue shift (1–2 nm)
between 25 °C and 55 °C.

For compounds 1c and 1d (Fig. 6C and D, respectively)
a structured emission is observed in Egg-PC, especially for
compound 1d. In DPPC and DODAB, the emission bands
of both compounds are basically non-structured and, in
some cases, seem clearly to be composed of two emissions.
For compound 1c, a significant spectral shift is observed
between the different lipid membranes. The maximum

LUMO LUMO

LUMO

LUMO

HOMO

HOMO

HOMO

HOMO

1a 1b

1c 1d

Fig. 5 Representation of
HOMO (lower) and LUMO
(upper) molecular orbitals of
compounds 1a–d
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emission wavelength in Egg-PC is similar to that in dichloro-
methane, while for DODAB a more hydrated environment is
predicted. For compound 1d, the emission maxima in all
lipids are similar to the observed in ethylene glycol, pointing
also to a hydrated location of this compound in lipid vesicles.

In order to obtain further information about the behavior
of these molecules in lipid membranes, fluorescence
(steady-state) anisotropy measurements were performed.
The average fluorescence steady-state anisotropies (r) and
fluorescence quantum yields of the four compounds in lipid
vesicles are shown in Table 3. Fluorescence anisotropy
values in ethylene glycol at room temperature were also
determined for comparison, being similar for all molecules.
For each compound, an example of fluorescence anisotropy
spectrum is displayed as inset in Fig. 6. Notable variations

with emission wavelength are observed for compound 1a
(inset of Fig. 6A), while the variations are smaller for
compounds 1c, 1d and 1b (inset of Fig. 6B–D). In ethylene
glycol, the steady-state fluorescence anisotropy is constant
with wavelength for all compounds. The behavior observed
in lipid membranes points to the existence of two emitting
species, corresponding to compound locations in different
environments.

Figures 7 and 8 display an example of the fit of
anisotropy components, IVV and G∙IVH (Eqs. 5 and 6), and
the fitting to the anisotropy curve, as well as the respective
spectral contributions recovered from the fitting. The results
are given in Table 4.

For all compounds, two components were recovered,
one with higher anisotropy (r1) and lower maximum

Fig. 6 Normalized fluorescence
spectra of compounds 1a–d in
lipid membranes: Egg-PC at
25 °C (—); DPPC gel phase
at 25 °C (− − −); DPPC liquid-
crystalline phase at 55 °C
(− · − · −); DODAB gel phase
at 25 °C (· · · · · ·); DODAB
liquid-crystalline phase at 55 °C
(........). Insets: Fluorescence an-
isotropy spectrum of compounds
1a–d in DPPC at gel phase
(25 °C), as an example.
A Compound 1a (lexc=
360 nm); B Compound 1b
(lexc=360 nm); C Compound
1c (lexc=370 nm); D Compound
1d (lexc=370 nm)

Table 3 Average steady-state fluorescence anisotropy (r) values, fluorescence quantum yields and maximum emission wavelengths (lem) of
compounds 1a–d in lipid membranes. Values in ethylene glycol at room temperature are also shown for comparison

Compound 1a Compound 1b Compound 1c Compound 1d

lem /nm ΦF
a r lem /nm ΦF

a r lem /nm ΦF
b r lem /nm ΦF

b r

DPPC (25 °C) 419; 438 0.034 0.089 416 0.011 0.234 459 0.042 0.203 448 0.030 0.194

DPPC (55 °C) 438 0.013 0.065 415 0.004 0.185 457 0.010 0.192 444 0.008 0.190

DODAB (25 °C) 421 0.084 0.188 415 0.013 0.210 467 0.054 0.173 449 0.031 0.189

DODAB (55 °C) 439 0.047 0.075 414 0.005 0.140 469 0.017 0.161 448 0.011 0.167

Egg-PC (25 °C) 440 0.024 0.066 416 0.006 0.231 449 0.022 0.229 424; 445 0.015 0.212

Ethylene glycol (25 °C) 431 – 0.276 421 – 0.272 465 – 0.240 444 – 0.264

a Relative to anthracene in ethanol (Φr=0.27 at 25 °C [12])
b Relative to quinine sulfate in 0.05 M H2SO4 (Φr=0.546 at 25 °C [13, 14])
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emission wavelength (l1), corresponding to compound
molecules located deeper in the lipid membrane, and
another corresponding to a more hydrated environment
(higher emission wavelength, l2, and lower anisotropy, r2).
The fraction of the first component, f1 (corresponding to the
fraction of spectral area), is also presented. In general, the
microviscosity decreases from the interface to the interior
of the membrane [26, 27], with a more pronounced
variation when the membrane is in the liquid-crystalline
phase [27]. Thus, the recovered anisotropy values for the

two compound locations are in opposite direction to that
given by the spectral band positions. This can be explained
by the observed increase in the fluorescence quantum yield
with solvent polarity (Table 1). The absorption spectra
exhibit a very low dependence on solvent polarity (insets of
Fig. 2). From the Strickler-Berg relation [18, 28], it can be
concluded that the radiative lifetime, τr, is mainly invariant
with polarity. Therefore, a higher ΦF value results from an
increase of the excited-state lifetime. This, in turn, contributes
to a decrease in fluorescence anisotropy, as the excited

Fig. 7 Fit of compound 1a in
DODAB gel phase (25 °C). A
IVV component and fitted curve;
B G·IVH component and fitted
curve; C Recovered spectral
components from the fitting
procedure; D Fluorescence
steady-state anisotropy and
recovered curve (calculated
from the recovered components)

Fig. 8 Fit of compound 1d
in DODAB gel phase (25 °C).
A IVV component and fitted
curve; B G·IVH component and
fitted curve; C Recovered
spectral components from the
fitting procedure; D Fluores-
cence steady-state anisotropy
and recovered curve (calculated
from the recovered components)
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compound has more time to rotate leading to a depolarization
of its fluorescence.

Compound 1a locates mainly in a very hydrated
environment (l2 values higher than lmax observed in
methanol), while compound 1b preferential location is
deeper inside the lipid membrane, as the component with
lower maximum emission wavelength (406–414 nm) is
dominant (f1>0.50). For compounds 1a and 1b, similar
environments (as inferred from the maximum emission
wavelengths) show very distinct anisotropy values for
component 2 (Table 4), r2 value being especially low for
compound 1a. The different geometry (vd. Fig. 4) of both
compounds cannot explain this distinct behavior, as com-
pounds 1c and 1d which have also different geometries do
not show similar variations in anisotropy values. This
peculiar behavior of compound 1a indicates that some of its
molecules locate at the outer part of the liposome interface,
with a fluidity approaching that of water.

Upon transition from the gel (25 °C) to the liquid-
crystalline (55 °C) phase (for DPPC and DODAB),
compound 1a relocates to a more hydrated environment,
as the f1 value strongly decreases. The opposite seems to
happen for compound 1c, where f1 clearly increases at 55 °C.
Therefore, compounds with a planar geometry (1a and 1c)
have higher mobility in the lipid vesicles when phase transition
occurs.

Liposomes have been widely used to deliver anticancer
agents, in order to reduce the toxic effects of the drugs or to
increase the drug circulation time and effectiveness [29]. The
studies described here are important for the incorporation of
the new potential antitumoral benzothienopyran-1-ones in
liposomes for future controlled drug delivery applications.

Conclusions

The four new potential antitumoral compounds, 3-
arylbenzothieno[2,3-c]pyran-1-ones, show a solvent sensitive
emission, with significant red shifts in polar solvents for the
methoxylated compounds. Compound 1c exhibits the higher
fluorescence quantum yields in all solvents studied. The
estimated excited state dipole moments point to an ICT
character of the excited state, more pronounced for compound
1c, confirmed by molecular quantum chemistry calculations.

Photophysical studies of the compounds incorporated in
liposomes of DPPC, DODAB and Egg-PC indicate that all
the compounds exhibit two different locations, one due to a
deep penetration in the lipid membrane and other
corresponding to a more hydrated environment. Com-
pounds with a planar geometry (1a and 1c) have higher
mobility in the lipid vesicles when phase transition occurs.

Considering the already tested anti-proliferative activity
of human tumor cell lines exhibited by these molecules, theT
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results obtained here are important for future drug delivery
applications using liposomes.
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