242 research outputs found

    Effetti della somministrazione di buprenorfina transdermica in pazienti oncologici : Risultati di uno studio di outcome

    Get PDF
    Nonostante il dolore affligga la maggior parte dei pazienti oncologici, soprattutto nelle fasi metastatiche della malattia, spesso il trattamento non \ue8 proporzionato all\u2019intensit\ue0 del dolore. Le preparazioni transdermiche hanno alcuni vantaggi rispetto a quelle orali e parenterali, ma le evidenze fornite da studi comparativi sono ancora scarse. Nel contesto di una iniziativa pi\uf9 ampia, nel 2006 \ue8 stato avviato in Italia uno studio di Outcome Research per studiare gli effetti di diverse terapie analgesiche, in particolare Buprenorfina TDS. Nonostante i limiti legati alla natura osservazionale dello studio, i risultati ottenuti forniscono informazioni ai medici per comprendere meglio gli effetti della somministrazione di Buprenorfina transdermica in una casistica ampia e ben caratterizzata e possono essere utili per disegnare ulteriori studi comparativ

    Identification of a 2-propanol analogue modulating the non-enzymatic function of indoleamine 2,3-dioxygenase 1

    Get PDF
    Abstract Indoleamine 2,3 dioxygenase 1 (IDO1) is a metabolic enzyme that catalyzes the conversion of the essential amino acid tryptophan (Trp) into a series of immunoactive catabolites, collectively known as kynurenines. Through the depletion of Trp and the generation of kynurenines, IDO1 represents a key regulator of the immune responses involved in physiologic homeostasis as well as in neoplastic and autoimmune pathologies. The IDO1 enzyme has been described as an important immune checkpoint to be targeted by catalytic inhibitors in the treatment of cancer. In contrast, a defective expression/activity of the enzyme has been demonstrated in autoimmune diseases. Beside its catalytic activity, the IDO1 protein is endowed with an additional function associated with the presence of two immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which, once phosphorylated, bind SHP phosphatases and mediate a long-term immunoregulatory activity of IDO1. Herein, we report the screening of a focused library of molecules bearing a propanol core by a protocol combining microscale thermophoresis (MST) analysis and a cellular assay. As a result, the combined screening identified a 2-propanolol analogue, VIS351, as the first potent activator of the ITIM-mediated function of the IDO1 enzyme. VIS351 displayed a good dissociation constant (Kd = 1.90 μM) for IDO1 and a moderate cellular inhibitor activity (IC50 = 11.463 μM), although it did not show any catalytic inhibition of the recombinant IDO1 enzyme. Because we previously demonstrated that the enzymatic and non-enzymatic (i.e., ITIM-mediated) functions of IDO1 reside in different conformations of the protein, we hypothesized that in the cellular system VIS351 may shift the dynamic conformational balance towards the ITIM-favoring folding of IDO1, resulting in the activation of the signaling rather than catalytic activity of IDO1. We demonstrated that VIS351 activated the ITIM-mediated signaling of IDO1 also in mouse plasmacytoid dendritic cells, conferring those cells an immunosuppressive phenotype detectable in vivo. Thus the manuscript describes for the first time a small molecule as a positive modulator of IDO1 signaling function, paving the basis for an innovative approach to develop first-in-class drugs acting on the IDO1 target

    Influence of Estrogen Modulation on Glia Activation in a Murine Model of Parkinson's Disease

    Get PDF
    Epidemiological data suggest a sexual dimorphism in Parkinson disease (PD), with women showing lower risk of developing PD. Vulnerability of the nigrostriatal pathway may be influenced by exposure to estrogenic stimulation throughout fertile life. To further address this issue, we analyzed the progression of nigrostriatal damage, microglia and astrocyte activation and microglia polarization triggered by intrastriatal injection of dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in male, female and ovariectomized (OVX) mice, as well as in OVX mice supplemented with 17\u3b2estradiol (OVX+E). Animals were sacrificed at different time points following 6-OHDA injection and brain sections containing striatum and substantia nigra pars compacta (SNc) underwent immunohistochemistry for tyrosine hydroxylase (TH) (dopaminergic marker), immunofluorescence for IBA1 and GFAP (markers of microglia and astrocyte activation, respectively) and triple immunoflorescent to identify polarization of microglia toward the cytotoxic M1 (DAPI/IBA1/TNF\u3b1) or cytoprotective M2 (DAPI/IBA1/CD206) phenotype. SNc damage induced by 6-OHDA was significantly higher in OVX mice, as compared to all other experimental groups, at 7 and 14 days after surgery. Astrocyte activation was higher in OVX mice with respect the other experimental groups, at all time points. Microglial activation in the SNc was detected at earlier time points in male, female and OVX+E, while in OVX mice was detected at all time-points. Microglia polarization toward the M2, but not the M1, phenotype was detected in female and OVX+E mice, while the M1 phenotype was observed only in male and OVX mice. Our results support the protective effects of estrogens against nigrostriatal degeneration, suggesting that such effects may be mediated by an interaction with microglia, which tend to polarize preferentially toward an M2, cytoprotective phenotype in the presence of intense estrogenic stimulation

    Immune reconstitution following autologous hematopoietic stem cell transplantation for multiple sclerosis : a review on behalf of the EBMT autoimmune diseases working party

    Get PDF
    Multiple sclerosis (MS) is a central nervous system (CNS) disorder, which is mediated by an abnormal immune response coordinated by T and B cells resulting in areas of inflammation, demyelination, and axonal loss. Disease-modifying treatments (DMTs) are available to dampen the inflammatory aggression but are ineffective in many patients. Autologous hematopoietic stem cell transplantation (HSCT) has been used as treatment in patients with a highly active disease, achieving a long-term clinical remission in most. The rationale of the intervention is to eradicate inflammatory autoreactive cells with lympho-ablative regimens and restore immune tolerance. Immunological studies have demonstrated that autologous HSCT induces a renewal of TCR repertoires, resurgence of immune regulatory cells, and depletion of proinflammatory T cell subsets, suggesting a “resetting” of immunological memory. Although our understanding of the clinical and immunological effects of autologous HSCT has progressed, further work is required to characterize the mechanisms that underlie treatment efficacy. Considering that memory B cells are disease-promoting and stem-like T cells are multipotent progenitors involved in self-regeneration of central and effector memory cells, investigating the reconstitution of B cell compartment and stem and effector subsets of immunological memory following autologous HSCT could elucidate those mechanisms. Since all subjects need to be optimally protected from vaccine-preventable diseases (including COVID-19), there is a need to ensure that vaccination in subjects undergoing HSCT is effective and safe. Additionally, the study of vaccination in HSCT-treated subjects as a means of evaluating immune responses could further distinguish broad immunosuppression from immune resetting

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Search for Doubly-Charged Higgs Bosons at LEP

    Get PDF
    Doubly-charged Higgs bosons are searched for in e^+e^- collision data collected with the L3 detector at LEP at centre-of-mass energies up to 209 GeV. Final states with four leptons are analysed to tag the pair-production of doubly charged Higgs bosons. No significant excess is found and lower limits at 95% confidence level on the doubly-charged Higgs boson mass are derived. They vary from 95.5 GeV to 100.2 GeV, depending on the decay mode. Doubly-charged Higgs bosons which couple to electrons would modify the cross section and forward-backward asymmetry of the e^+e^- -> e^+e^- process. The measurements of these quantities do not deviate from the Standard Model expectations and doubly-charged Higgs bosons with masses up to the order of a TeV are excluded
    corecore