290 research outputs found

    Large-N limit of the two-dimensinal Non-Local Yang-Mills theory on arbitrary surfaces with boundary

    Full text link
    The large-N limit of the two-dimensional non-local U(N)(N) Yang-Mills theory on an orientable and non-orientable surface with boundaries is studied. For the case which the holonomies of the gauge group on the boundaries are near the identity, U≃IU\simeq I, it is shown that the phase structure of these theories is the same as that obtain for these theories on orientable and non-orientable surface without boundaries, with same genus but with a modified area V+A^V+\hat{A}.Comment: 10 pages, no figure

    Non-Douglas-Kazakov phase transition of two-dimensional generalized Yang-Mills theories

    Get PDF
    In two-dimensional Yang-Mills and generalized Yang-Mills theories for large gauge groups, there is a dominant representation determining the thermodynamic limit of the system. This representation is characterized by a density the value of which should everywhere be between zero and one. This density itself is determined through a saddle-point analysis. For some values of the parameter space, this density exceeds one in some places. So one should modify it to obtain an acceptable density. This leads to the well-known Douglas-Kazakov phase transition. In generalized Yang-Mills theories, there are also regions in the parameter space where somewhere this density becomes negative. Here too, one should modify the density so that it remains nonnegative. This leads to another phase transition, different from the Douglas-Kazakov one. Here the general structure of this phase transition is studied, and it is shown that the order of this transition is typically three. Using carefully-chosen parameters, however, it is possible to construct models with phase-transition orders not equal to three. A class of these non-typical models are also studied.Comment: 11 pages, accepted for publication in Eur. Phys. J.

    Open Wilson Lines and Group Theory of Noncommutative Yang-Mills Theory in Two Dimensions

    Get PDF
    The correlation functions of open Wilson line operators in two-dimensional Yang-Mills theory on the noncommutative torus are computed exactly. The correlators are expressed in two equivalent forms. An instanton expansion involves only topological numbers of Heisenberg modules and enables extraction of the weak-coupling limit of the gauge theory. A dual algebraic expansion involves only group theoretic quantities, winding numbers and translational zero modes, and enables analysis of the strong-coupling limit of the gauge theory and the high-momentum behaviour of open Wilson lines. The dual expressions can be interpreted physically as exact sums over contributions from virtual electric dipole quanta.Comment: 37 pages. References adde

    Classical Solutions of the TEK Model and Noncommutative Instantons in Two Dimensions

    Full text link
    The twisted Eguchi-Kawai (TEK) model provides a non-perturbative definition of noncommutative Yang-Mills theory: the continuum limit is approached at large NN by performing suitable double scaling limits, in which non-planar contributions are no longer suppressed. We consider here the two-dimensional case, trying to recover within this framework the exact results recently obtained by means of Morita equivalence. We present a rather explicit construction of classical gauge theories on noncommutative toroidal lattice for general topological charges. After discussing the limiting procedures to recover the theory on the noncommutative torus and on the noncommutative plane, we focus our attention on the classical solutions of the related TEK models. We solve the equations of motion and we find the configurations having finite action in the relevant double scaling limits. They can be explicitly described in terms of twist-eaters and they exactly correspond to the instanton solutions that are seen to dominate the partition function on the noncommutative torus. Fluxons on the noncommutative plane are recovered as well. We also discuss how the highly non-trivial structure of the exact partition function can emerge from a direct matrix model computation. The quantum consistency of the TEK formulation is eventually checked by computing Wilson loops in a particular limit.Comment: 41 pages, JHEP3. Minor corrections, references adde

    Localization for Yang-Mills Theory on the Fuzzy Sphere

    Full text link
    We present a new model for Yang-Mills theory on the fuzzy sphere in which the configuration space of gauge fields is given by a coadjoint orbit. In the classical limit it reduces to ordinary Yang-Mills theory on the sphere. We find all classical solutions of the gauge theory and use nonabelian localization techniques to write the partition function entirely as a sum over local contributions from critical points of the action, which are evaluated explicitly. The partition function of ordinary Yang-Mills theory on the sphere is recovered in the classical limit as a sum over instantons. We also apply abelian localization techniques and the geometry of symmetric spaces to derive an explicit combinatorial expression for the partition function, and compare the two approaches. These extend the standard techniques for solving gauge theory on the sphere to the fuzzy case in a rigorous framework.Comment: 55 pages. V2: references added; V3: minor corrections, reference added; Final version to be published in Communications in Mathematical Physic

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters
    • 

    corecore