176 research outputs found

    Decoupling the coupled DGLAP evolution equations: an analytic solution to pQCD

    Full text link
    Using Laplace transform techniques, along with newly-developed accurate numerical inverse Laplace transform algorithms, we decouple the solutions for the singlet structure function Fs(x,Q2)F_s(x,Q^2) and G(x,Q2)G(x,Q^2) of the two leading-order coupled singlet DGLAP equations, allowing us to write fully decoupled solutions: F_s(x,Q^2)={\cal F}_s(F_{s0}(x), G_0(x)), G(x,Q^2)={\cal G}(F_{s0}(x), G_0(x)). Here Fs{\cal F}_s and G\cal G are known functions---found using the DGLAP splitting functions---of the functions Fs0(x)Fs(x,Q02)F_{s0}(x) \equiv F_s(x,Q_0^2) and G0(x)G(x,Q02)G_{0}(x) \equiv G(x,Q_0^2), the chosen starting functions at the virtuality Q02Q_0^2. As a proof of method, we compare our numerical results from the above equations with the published MSTW LO gluon and singlet FsF_s distributions, starting from their initial values at Q02=1GeV2Q_0^2=1 GeV^2. Our method completely decouples the two LO distributions, at the same time guaranteeing that both distributions satisfy the singlet coupled DGLAP equations. It furnishes us with a new tool for readily obtaining the effects of the starting functions (independently) on the gluon and singlet structure functions, as functions of both Q2Q^2 and Q02Q_0^2. In addition, it can also be used for non-singlet distributions, thus allowing one to solve analytically for individual quark and gluon distributions values at a given xx and Q2Q^2, with typical numerical accuracies of about 1 part in 10510^5, rather than having to evolve numerically coupled integral-differential equations on a two-dimensional grid in x,Q2x, Q^2, as is currently done.Comment: 6 pages, 2 figure

    A new numerical method for obtaining gluon distribution functions G(x,Q2)=xg(x,Q2)G(x,Q^2)=xg(x,Q^2), from the proton structure function F2γp(x,Q2)F_2^{\gamma p}(x,Q^2)

    Get PDF
    An exact expression for the leading-order (LO) gluon distribution function G(x,Q2)=xg(x,Q2)G(x,Q^2)=xg(x,Q^2) from the DGLAP evolution equation for the proton structure function F2γp(x,Q2)F_2^{\gamma p}(x,Q^2) for deep inelastic γp\gamma^* p scattering has recently been obtained [M. M. Block, L. Durand and D. W. McKay, Phys. Rev. D{\bf 79}, 014031, (2009)] for massless quarks, using Laplace transformation techniques. Here, we develop a fast and accurate numerical inverse Laplace transformation algorithm, required to invert the Laplace transforms needed to evaluate G(x,Q2)G(x,Q^2), and compare it to the exact solution. We obtain accuracies of less than 1 part in 1000 over the entire xx and Q2Q^2 spectrum. Since no analytic Laplace inversion is possible for next-to-leading order (NLO) and higher orders, this numerical algorithm will enable one to obtain accurate NLO (and NNLO) gluon distributions, using only experimental measurements of F2γp(x,Q2)F_2^{\gamma p}(x,Q^2).Comment: 9 pages, 2 figure

    Numerical Solutions of Matrix Differential Models using Cubic Matrix Splines II

    Full text link
    This paper presents the non-linear generalization of a previous work on matrix differential models. It focusses on the construction of approximate solutions of first-order matrix differential equations Y'(x)=f(x,Y(x)) using matrix-cubic splines. An estimation of the approximation error, an algorithm for its implementation and illustrative examples for Sylvester and Riccati matrix differential equations are given.Comment: 14 pages; submitted to Math. Comp. Modellin

    Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects

    Full text link
    Using the helicity method we derive complete formulas for the joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. In the helicity method the angular analysis is of cascade type, i.e. each decay in the decay chain is analyzed in the respective rest system of that particle. Such an approach is ideally suited as input for a Monte Carlo event generation program. As a specific example we take the decay Ξ0Σ++l+νˉl\Xi^0 \to \Sigma^+ + l^- + \bar{\nu}_l (l=e,μl^-=e^-, \mu^-) followed by the nonleptonic decay Σ+p+π0\Sigma^+ \to p + \pi^0 for which we show a few examples of decay distributions which are generated from a Monte Carlo program based on the formulas presented in this paper. All the results of this paper are also applicable to the semileptonic and nonleptonic decays of ground state charm and bottom baryons, and to the decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos corrected, comments added, references added and update

    O(αs)O(\alpha_s) corrections to the polar angle dependence of the longitudinal spin-spin correlation asymmetry in e+eqqˉe^+e^-\to q\bar q

    Full text link
    We provide analytical results for the O(αs)O(\alpha_s) corrections to the polar angle dependence of the longitudinal spin-spin correlation asymmetry in e+eqqˉe^+e^-\to q\bar q. For top quark pair production the O(αs)O(\alpha_s) corrections to the longitudinal spin-spin asymmetry are strongly polar angle dependent and can amount up to 4%4\% in the q2q^2-range from above ttˉt\bar t threshold up to q2=1000\sqrt{q^2}=1000 GeV. The O(αs)O(\alpha_s) radiative corrections to the correlation asymmetry are below 1%1\% in the forward direction where the cross section is largest. In the e+ebbˉe^+e^-\to b\bar b case the O(αs)O(\alpha_s) corrections reduce the asymmetry value from its mb=0m_b=0 value of 100%-100\% to approximately 96%-96\% for q2q^2-values around the ZZ peak and are practically independent of the value of the polar angle theta. This reduction can be traced to finite anomalous contributions from residual mass effects which survive the mb0m_b\to 0 limit. We discuss the role of the anomalous contributions and the pattern of how they contribute to spin-flip and non-flip terms.Comment: 32 pages written in LaTeX, including 8 encapsulated postscript figures and 2 tables; v2: corrections according to the erratu

    Measurement of the photon+b+b-jet production differential cross section in ppˉp\bar{p} collisions at \sqrt{s}=1.96~\TeV

    Get PDF
    We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Electrodeposition of Co-Ni-MoxOy Powders: Part I. The Influence of Deposition Conditions on Powder Composition and Morphology

    Get PDF
    The Co-Ni-MoxOy powders were obtained electrochemically at a constant current density from ammonia electrolyte. Ni and Co were anomalously deposited, inducing Mo deposition, which cannot be deposited separately from aqueous solutions. The obtained Co-Ni-MoxOy powders were investigated by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electon microscope (SEM) methods. Based on the obtained experimental results, it was concluded that the particle size of deposited powders is influenced by the chemical composition of the electrolyte and current density imposed. XRD results suggested that obtained powders were of amorphous structure, although a Co3Mo compound can be formed if certain experimental conditions are applied

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe
    corecore