research

A new numerical method for obtaining gluon distribution functions G(x,Q2)=xg(x,Q2)G(x,Q^2)=xg(x,Q^2), from the proton structure function F2γp(x,Q2)F_2^{\gamma p}(x,Q^2)

Abstract

An exact expression for the leading-order (LO) gluon distribution function G(x,Q2)=xg(x,Q2)G(x,Q^2)=xg(x,Q^2) from the DGLAP evolution equation for the proton structure function F2γp(x,Q2)F_2^{\gamma p}(x,Q^2) for deep inelastic γp\gamma^* p scattering has recently been obtained [M. M. Block, L. Durand and D. W. McKay, Phys. Rev. D{\bf 79}, 014031, (2009)] for massless quarks, using Laplace transformation techniques. Here, we develop a fast and accurate numerical inverse Laplace transformation algorithm, required to invert the Laplace transforms needed to evaluate G(x,Q2)G(x,Q^2), and compare it to the exact solution. We obtain accuracies of less than 1 part in 1000 over the entire xx and Q2Q^2 spectrum. Since no analytic Laplace inversion is possible for next-to-leading order (NLO) and higher orders, this numerical algorithm will enable one to obtain accurate NLO (and NNLO) gluon distributions, using only experimental measurements of F2γp(x,Q2)F_2^{\gamma p}(x,Q^2).Comment: 9 pages, 2 figure

    Similar works