research

Decoupling the coupled DGLAP evolution equations: an analytic solution to pQCD

Abstract

Using Laplace transform techniques, along with newly-developed accurate numerical inverse Laplace transform algorithms, we decouple the solutions for the singlet structure function Fs(x,Q2)F_s(x,Q^2) and G(x,Q2)G(x,Q^2) of the two leading-order coupled singlet DGLAP equations, allowing us to write fully decoupled solutions: F_s(x,Q^2)={\cal F}_s(F_{s0}(x), G_0(x)), G(x,Q^2)={\cal G}(F_{s0}(x), G_0(x)). Here Fs{\cal F}_s and G\cal G are known functions---found using the DGLAP splitting functions---of the functions Fs0(x)Fs(x,Q02)F_{s0}(x) \equiv F_s(x,Q_0^2) and G0(x)G(x,Q02)G_{0}(x) \equiv G(x,Q_0^2), the chosen starting functions at the virtuality Q02Q_0^2. As a proof of method, we compare our numerical results from the above equations with the published MSTW LO gluon and singlet FsF_s distributions, starting from their initial values at Q02=1GeV2Q_0^2=1 GeV^2. Our method completely decouples the two LO distributions, at the same time guaranteeing that both distributions satisfy the singlet coupled DGLAP equations. It furnishes us with a new tool for readily obtaining the effects of the starting functions (independently) on the gluon and singlet structure functions, as functions of both Q2Q^2 and Q02Q_0^2. In addition, it can also be used for non-singlet distributions, thus allowing one to solve analytically for individual quark and gluon distributions values at a given xx and Q2Q^2, with typical numerical accuracies of about 1 part in 10510^5, rather than having to evolve numerically coupled integral-differential equations on a two-dimensional grid in x,Q2x, Q^2, as is currently done.Comment: 6 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions