65 research outputs found
Aplicación Android de apoyo a fisioterapeutas
Las aplicaciones móviles de apoyo a la salud se están convirtiendo en
herramientas necesarias en el día a día, tanto las destinadas a los profesionales
sanitarios como las dirigidas solamente a los pacientes.
Sin embargo, no todas las áreas de la medicina están suficientemente
apoyadas por este tipo de aplicaciones. En concreto, la fisioterapia es uno de las
áreas de la salud que necesita un mayor esfuerzo en este sentido, especialmente en
aplicaciones destinadas a los profesionales sanitarios.
En este Trabajo Fin de Grado se propone el desarrollo de una aplicación
móvil Android que proporcione a los profesionales de la fisioterapia una
herramienta de apoyo a su trabajo diario. La aplicación se probará sobre
Smartphone con usuarios finales de modo que se pueda evaluar su funcionamiento
en un entorno real.
Se busca conseguir ayudar a los profesionales a hacer de manera rápida y
desde un simple móvil, lo que antes era laborioso y se necesitaba estar con un
ordenador.Grado en Ingeniería de Tecnologías Específicas de Telecomunicació
The universal variability of the stellar initial mass function probed by the TIMER survey
The debate about the universality of the stellar initial mass function (IMF) revolves around two competing lines of evidence. While measurements in the Milky Way, an archetypal spiral galaxy, seem to support an invariant IMF, the observed properties of massive early-type galaxies (ETGs) favor an IMF somehow sensitive to the local star-formation conditions. However, the fundamental methodological and physical differences between the two approaches have hampered a comprehensive understanding of IMF variations. Here, we describe an improved modeling scheme that, for the first time, allows consistent IMF measurements across stellar populations with different ages and complex star-formation histories (SFHs). Making use of the exquisite MUSE optical data from the TIMER survey and powered by the MILES stellar population models, we show the age, metallicity, [Mg/Fe], and IMF slope maps of the inner regions of NGC 3351, a spiral galaxy with a mass similar to that of the Milky Way. The measured IMF values in NGC 3351 follow the expectations from a Milky Way-like IMF, although they simultaneously show systematic and spatially coherent variations, particularly for low-mass stars. In addition, our stellar population analysis reveals the presence of metal-poor and Mg-enhanced star-forming regions that appear to be predominantly enriched by the stellar ejecta of core-collapse supernovae. Our findings therefore showcase the potential of detailed studies of young stellar populations to provide the means to better understand the early stages of galaxy evolution and, in particular, the origin of the observed IMF variations beyond and within the Milky Way
Inside-out formation of nuclear discs and the absence of old central spheroids in barred galaxies of the TIMER survey
The centres of disc galaxies host a variety of structures built via both internal and external processes. In this study, we constrain the formation and evolution of these central structures, in particular, nuclear rings and nuclear discs, by deriving maps of mean stellar ages, metallicities, and [α/Fe] abundances. We use observations obtained with the MUSE integral-field spectrograph for the TIMER sample of 21 massive barred galaxies. Our results indicate that nuclear discs and nuclear rings are part of the same physical component, with nuclear rings constituting the outer edge of nuclear discs. All nuclear discs in the sample are clearly distinguished based on their stellar population properties. As expected in the picture of bar-driven secular evolution, nuclear discs are younger, more metal-rich, and exhibit lower [α/Fe] enhancements, as compared to their immediate surroundings. Moreover, nuclear discs exhibit well-defined radial gradients, with ages and metallicities decreasing, and [α/Fe] abundances increasing with radius out to the nuclear ring. Often, these gradients show no breaks from the edge of the nuclear disc up through the centre, suggesting that these structures extend to the very centres of galaxies. We argue that continuous (stellar) nuclear discs may form from a series of bar-built (initially gas-rich) nuclear rings that expand in their radius as the bar evolves. In this picture, nuclear rings are simply the (often) star-forming outer edge of nuclear discs. Finally, by combining our results with those taken from a accompanying kinematic study, we do not find evidence for the presence of large, dispersion-dominated components in the centres of these galaxies. This could be a result of quiet merger histories, despite the large galaxy masses, or, perhaps, due to high angular momentum and strong feedback processes preventing the formation of these kinematically hot components
Kinematic signatures of nuclear discs and bar-driven secular evolution in nearby galaxies of the MUSE TIMER project
The central regions of disc galaxies hold clues to the processes that dominate their formation and evolution. To exploit this, the TIMER project has obtained high signal-to-noise and spatial resolution integral-field spectroscopy data of the inner few kpc of 21 nearby massive barred galaxies, which allows studies of the stellar kinematics in their central regions with unprecedented spatial resolution. We confirm theoretical predictions of the effects of bars on stellar kinematics and identify box/peanuts through kinematic signatures in mildly and moderately inclined galaxies, finding a lower limit to the fraction of massive barred galaxies with box/peanuts at ∼62%. Further, we provide kinematic evidence of the connection between barlenses, box/peanuts, and bars. We establish the presence of nuclear discs in 19 galaxies and show that their kinematics are characterised by near-circular orbits with low pressure support and that they are fully consistent with the bar-driven secular evolution picture for their formation. In fact, we show that these nuclear discs have, in the region where they dominate, larger rotational support than the underlying main galaxy disc. In addition, we define a kinematic radius for the nuclear discs and show that it relates to bar radius, ellipticity and strength, and bar-to-total ratio. Comparing our results with photometric studies of galaxy bulges, we find that careful, state-of-the-art galaxy image decompositions are generally able to discern nuclear discs from classical bulges if the images employed have high enough physical spatial resolution. In fact, we show that nuclear discs are typically identified in such image decompositions as photometric bulges with (near-)exponential profiles. However, we find that the presence of composite bulges (galaxies hosting both a classical bulge and a nuclear disc) can often be unnoticed in studies based on photometry alone and suggest a more stringent threshold to the Sérsic index to identify galaxies with pure classical bulges
The Mice at play in the CALIFA survey: A case study of a gas-rich major merger between first passage and coalescence
We present optical integral field spectroscopy (IFS) observations of the
Mice, a major merger between two massive (>10^11Msol) gas-rich spirals NGC4676A
and B, observed between first passage and final coalescence. The spectra
provide stellar and gas kinematics, ionised gas properties and stellar
population diagnostics, over the full optical extent of both galaxies. The Mice
provide a perfect case study highlighting the importance of IFS data for
improving our understanding of local galaxies. The impact of first passage on
the kinematics of the stars and gas has been significant, with strong bars
likely induced in both galaxies. The barred spiral NGC4676B exhibits a strong
twist in both its stellar and ionised gas disk. On the other hand, the impact
of the merger on the stellar populations has been minimal thus far: star
formation induced by the recent close passage has not contributed significantly
to the global star formation rate or stellar mass of the galaxies. Both
galaxies show bicones of high ionisation gas extending along their minor axes.
In NGC4676A the high gas velocity dispersion and Seyfert-like line ratios at
large scaleheight indicate a powerful outflow. Fast shocks extend to ~6.6kpc
above the disk plane. The measured ram pressure and mass outflow rate
(~8-20Msol/yr) are similar to superwinds from local ULIRGs, although NGC4676A
has only a moderate infrared luminosity of 3x10^10Lsol. Energy beyond that
provided by the mechanical energy of the starburst appears to be required to
drive the outflow. We compare the observations to mock kinematic and stellar
population maps from a merger simulation. The models show little enhancement in
star formation during and following first passage, in agreement with the
observations. We highlight areas where IFS data could help further constrain
the models.Comment: 23 pages, 13 figures, accepted to A&A. A version with a complete set
of high resolution figures is available here:
http://www-star.st-and.ac.uk/~vw8/resources/mice_v8_astroph.pd
The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation
WEAVE, the new wide-field, massively multiplexed spectroscopic survey
facility for the William Herschel Telescope, will see first light in late 2022.
WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a
nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini'
integral field units (IFUs), and a single large IFU. These fibre systems feed a
dual-beam spectrograph covering the wavelength range 366959\,nm at
, or two shorter ranges at . After summarising the
design and implementation of WEAVE and its data systems, we present the
organisation, science drivers and design of a five- to seven-year programme of
eight individual surveys to: (i) study our Galaxy's origins by completing
Gaia's phase-space information, providing metallicities to its limiting
magnitude for 3 million stars and detailed abundances for
million brighter field and open-cluster stars; (ii) survey million
Galactic-plane OBA stars, young stellar objects and nearby gas to understand
the evolution of young stars and their environments; (iii) perform an extensive
spectral survey of white dwarfs; (iv) survey
neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and
kinematics of stellar populations and ionised gas in cluster galaxies;
(vi) survey stellar populations and kinematics in field galaxies
at ; (vii) study the cosmic evolution of accretion
and star formation using million spectra of LOFAR-selected radio sources;
(viii) trace structures using intergalactic/circumgalactic gas at .
Finally, we describe the WEAVE Operational Rehearsals using the WEAVE
Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA
The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation
WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−959\,nm at R∼5000, or two shorter ranges at R∼20000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator
Modelación física en dimensiones reducidas de muros de contención en tierra armada con geotextil
A machine wasbuilt with the purpose to try physical modelling by making reinforced earth retaining walls with geo-textile. The machine reinforced earth retaining walls with geo-textile. The machine consists in a prismatic steel frame with steel sheet walls, including one in acrylic. The models was used sand out of washed rock, and as reinforcement was used an especial fabric, which underwent the standard testing in the factory PAVCO. The model 0.80 m long and 0.20 m wide, full of sand reinforced with the fabric. A total of 6 models were made whith different thickness of reinforced layer. The models were subject to a comprension load, and during the loading process it was observed the failure mechanism and stress-displacement behavior.Con el objeto de ensayar modelos escalados, se construyó un equipo para la modelación física de muros de contención en tierra reforzada con geotextil. El equipo consiste en un marco de acero prismático con paredes en lámina de acero, una de ellas en acrílico. En la construcción de los modelos se utilizó arena de peña lavada, el material de refuerzo consiste en una tela tipo interlón, material al que se le realizaron los ensayos estándar que se adelantan a los geotextiles en la empresa Pavco. El modelo consiste en un muro de 0,60 m de alto, 0,80 m de largo y 0,20 m de ancho de arena reforzada con tela. En total se realizaron seis modelos con diferentes espesores de capa reforzada, los modelos se sometieron a una carga de compresión y durante el proceso de carga se observó el mecanismo de falla y la curva esfuerzo-desplazamiento del modelo
- …