302 research outputs found
Model-independent evidence for contributions to decays
The data sample of decays acquired with the
LHCb detector from 7 and 8~TeV collisions, corresponding to an integrated
luminosity of 3 fb, is inspected for the presence of or
contributions with minimal assumptions about
contributions. It is demonstrated at more than 9 standard deviations that
decays cannot be described with
contributions alone, and that contributions play a dominant role in
this incompatibility. These model-independent results support the previously
obtained model-dependent evidence for charmonium-pentaquark
states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the
end
Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia
We present a comparison of our results from ground-based observations of
asteroid (21) Lutetia with imaging data acquired during the flyby of the
asteroid by the ESA Rosetta mission. This flyby provided a unique opportunity
to evaluate and calibrate our method of determination of size, 3-D shape, and
spin of an asteroid from ground-based observations. We present our 3-D
shape-modeling technique KOALA which is based on multi-dataset inversion. We
compare the results we obtained with KOALA, prior to the flyby, on asteroid
(21) Lutetia with the high-spatial resolution images of the asteroid taken with
the OSIRIS camera on-board the ESA Rosetta spacecraft, during its encounter
with Lutetia. The spin axis determined with KOALA was found to be accurate to
within two degrees, while the KOALA diameter determinations were within 2% of
the Rosetta-derived values. The 3-D shape of the KOALA model is also confirmed
by the spectacular visual agreement between both 3-D shape models (KOALA pre-
and OSIRIS post-flyby). We found a typical deviation of only 2 km at local
scales between the profiles from KOALA predictions and OSIRIS images, resulting
in a volume uncertainty provided by KOALA better than 10%. Radiometric
techniques for the interpretation of thermal infrared data also benefit greatly
from the KOALA shape model: the absolute size and geometric albedo can be
derived with high accuracy, and thermal properties, for example the thermal
inertia, can be determined unambiguously. We consider this to be a validation
of the KOALA method. Because space exploration will remain limited to only a
few objects, KOALA stands as a powerful technique to study a much larger set of
small bodies using Earth-based observations.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in P&S
Limit on the Radiative Neutrinoless Double Electron Capture of Ar from GERDA Phase I
Neutrinoless double electron capture is a process that, if detected, would
give evidence of lepton number violation and the Majorana nature of neutrinos.
A search for neutrinoless double electron capture of Ar has been
performed with germanium detectors installed in liquid argon using data from
Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso
Laboratory of INFN, Italy. No signal was observed and an experimental lower
limit on the half-life of the radiative neutrinoless double electron capture of
Ar was established: 3.6 10 yr at 90 % C.I.Comment: 7 pages, 3 figure
Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics
A detailed study is presented of the expected performance of the ATLAS
detector. The reconstruction of tracks, leptons, photons, missing energy and
jets is investigated, together with the performance of b-tagging and the
trigger. The physics potential for a variety of interesting physics processes,
within the Standard Model and beyond, is examined. The study comprises a series
of notes based on simulations of the detector and physics processes, with
particular emphasis given to the data expected from the first years of
operation of the LHC at CERN
Observation of Z production in proton-lead collisions at LHCb
The first observation of Z boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of root(s) N N = 5TeV is presented. The data sample corresponds to an integrated luminosity of 1.6 nb(-1) collected with the LHCb detector. The Z candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above 20 GeV/c. The invariant dimuon mass is restricted to the range 60-120 GeV/c. The Z production cross-section is measured to be sigma(Z ->mu+mu-) (fwd) = 13.5(-4.0)(+5.4)(stat.) +/- 1.2(syst.) nb in the direction of the proton beam and sigma(Z ->mu+mu-) (bwd) = 10.7(-5.1)(+8.4)(stat.) +/- 1.0(syst.) nb in the direction of the lead beam, where the first uncertainty is statistical and the second systematic
Surface-Energy Control and Characterization of Nanoparticle Coatings
Accurate and reproducible measurement of the structure and properties of high-value nanoparticles is extremely important for their commercialization. A significant proportion of engineered nanoparticle systems consist of some form of nominally core\u2013shell structure, whether by design or unintentionally. Often, these do not form an ideal core\u2013shell structure, with typical deviations including polydispersity of the core or shell, uneven or incomplete shells, noncentral cores, and others. Such systems may be created with or without intent, and in either case an understanding of the conditions for formation of such particles is desirable. Precise determination of the structure, composition, size, and shell thickness of such particles can prove challenging without the use of a suitable range of characterization techniques. Here, the authors present two such polymer core\u2013shell nanoparticle systems, consisting of polytetrafluoroethylene cores coated with a range of thicknesses of either polymethylmethacrylate or polystyrene. By consideration of surface energy, it is shown that these particles are expected to possess distinctly differing coating structures, with the polystyrene coating being incomplete. A comprehensive characterization of these systems is demonstrated, using a selection of complementary techniques including scanning electron microscopy, scanning transmission electron microscopy, thermogravimetric analysis, dynamic light scattering, differential centrifugal sedimentation, and X-ray photoelectron spectroscopy. By combining the results provided by these techniques, it is possible to achieve superior characterization and understanding of the particle structure than could be obtained by considering results separately
Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target
Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. They cover the kinematic domain View the MathML source in the photon virtuality, 0.0045 GeV/c2 in the invariant mass of the hadronic system. The results from the sum of the z -integrated K+ and K 12 multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit
Determining the Thickness and Completeness of the Shell of Polymer Core\u2013Shell Nanoparticles by X-ray Photoelectron Spectroscopy, Secondary Ion Mass Spectrometry, and Transmission Scanning Electron Microscopy
Core–shell nanoparticles (CSNPs) have become indispensable in various industrial applications. However, their real internal structure usually deviates from an ideal core–shell structure. To control how the particles perform with regard to their specific applications, characterization techniques are required that can distinguish an ideal from a nonideal morphology. In this work, we investigated poly(tetrafluoroethylene)–poly(methyl methacrylate) (PTFE–PMMA) and poly(tetrafluoroethylene)–polystyrene (PTFE–PS) polymer CSNPs with a constant core diameter (45 nm) but varying shell thicknesses (4–50 nm). As confirmed by transmission scanning electron microscopy (T-SEM), the shell completely covers the core for the PTFE–PMMA nanoparticles, while the encapsulation of the core by the shell material is incomplete for the PTFE–PS nanoparticles. X-ray photoelectron spectroscopy (XPS) was applied to determine the shell thickness of the nanoparticles. The software SESSA v2.0 was used to analyze the intensities of the elastic peaks, and the QUASES software package was employed to evaluate the shape of the inelastic background in the XPS survey spectra. For the first time, nanoparticle shell thicknesses are presented, which are exclusively based on the analysis of the XPS inelastic background. Furthermore, principal component analysis (PCA)-assisted time-of-flight secondary-ion mass spectrometry (ToF-SIMS) of the PTFE–PS nanoparticle sample set revealed a systematic variation among the samples and, thus, confirmed the incomplete encapsulation of the core by the shell material. As opposed to that, no variation is observed in the PCA score plots of the PTFE–PMMA nanoparticle sample set. Consequently, the complete coverage of the core by the shell material is proved by ToF-SIMS with a certainty that cannot be achieved by XPS and T-SEM
Imaging in juvenile idiopathic arthritis - international initiatives and ongoing work
Imaging is increasingly being integrated into clinical practice to improve diagnosis, disease control and outcome in children with juvenile idiopathic arthritis. Over the last decades several international groups have been launched to standardize and validate different imaging techniques. To enhance transparency and facilitate collaboration, we present an overview of ongoing initiatives
Evaluation of presumably disease causing SCN1A variants in a cohort of common epilepsy syndromes
Objective: The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods: We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation: We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP-001159435.1) are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60
7 10-4; OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions
- …
