28 research outputs found

    The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! [Commentary]

    Get PDF
    The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken

    Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management

    Get PDF
    Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.Seventh Framework Programme (E.U

    Environmental analysis: Emerging pollutants

    No full text
    Liquid chromatography-mass spectrometry (LC–MS) techniques are today’s methods of choice for the determination of emerging organic contaminants in environmental and biological samples. This chapter provides a general overview of LC–MS methods focusing on the current trends and potentials for the trace analysis of several selected classes of emerging contaminants, such as hormones and endocrine-disrupting compounds, carbon-based nanomaterials, perfluoroalkyl and polyfluoroalkyl substances, pharmaceuticals, personal care products, and polar pesticides. Various aspects of the current LC–MS methodologies are outlined, including sample preparation. A short overview of suspect screening and nontarget approaches using high-resolution MS instruments, aimed at the identification of unknown contaminants and transformation products, is also presented.Peer reviewe

    Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review

    No full text
    Endocrine disrupting chemicals (EDCs) are released into the environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDCs have major risks for humans by targeting different organs and systems in the body (e.g. reproductive system, breast tissue, adipose tissue, pancreas, etc.). Due to the ubiquity of human exposure to these compounds the aim of this review is to describe the most recent data on the effects induced by phthalates, bisphenol A and parabens in a critical window of exposure: in utero, during pregnancy, infants, and children. The interactions and mechanisms of toxicity of EDCs in relation to human general health problems, especially those broadening the term of endocrine disruption to ‘metabolic disruption’, should be deeply investigated. These include endocrine disturbances, with particular reference to reproductive problems and breast, testicular and ovarian cancers, and metabolic diseases such as obesity or diabetes

    Pharmaceuticals in a Mediterranean Basin: The influence of temporal and hydrological patterns in environmental risk assessment

    Get PDF
    Occurrence of pharmaceuticals in the aquatic environment is nowadays a well-established issue that has become a matter of both scientific and public concern. Tons of different classes of pharmaceuticals find their way to the environment at variable degrees, after their use and excretion through wastewater and sewage treatment systems. The main goal of this study was to correlate the dynamics and the environmental risk of pharmaceuticals with different temporal and hydrological patterns, at the Guadiana Basin (South of Portugal).Water sampleswere collected bimonthly during 2017 (classified as a drought year) and 2018 (post-drought year) in: Zebro, Álamos and Amieira (intermittent hydrological streams), and Lucefécit (perennial hydrological stream). The pharmaceuticals quantified in higher concentrations, out of 27 investigated, were diclofenac (up to 4806 ng L−1), ibuprofen (3161 ng L−1), hydrochlorothiazide (2726 ng L−1) and carbamazepine (3223 ng L−1). Zebro and Álamos presented the highest contamination by this group of environmental hazardous substances, which may be correlated with the presence of wastewater treatment plants upstream the sampling point of each stream. Furthermore, the highest concentrations occurred mainly during the dry period (2017), when the flow was nearly inexistent in Zebro, and in Álamos after the first heavy rainfalls

    Chemical and biological analysis of endocrine-disrupting hormones and estrogenic activity in an advanced sewage treatment plant

    No full text
    International audienceThe steroid hormones estrone (E-1), 17 beta-estradiol (E-2), estriol (E-3), 17 alpha-ethinylestradiol (EE2), and their conjugated forms were surveyed throughout an advanced sewage treatment plant (STP). The estrogen concentrations in water and sludge samples, collected in October 2004 and April 2005, were determined by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Simultaneously, the estrogenic activity was quantified using estrogen-responsive reporter cell lines (MELN) to investigate the behavior of overall estrogenic compounds. The estrogen concentrations in the inlet ranged from 200 to 500 ng/L, with the contribution of conjugated forms being higher than 50%. The major estrogens in influent were E-1 and E-3. The estrogenic activity was between 25 and 130 ng/L of E-2 equivalents (EEQs). Estrogen concentrations and estrogenicity measured in the inlet and in primary treated sewage were similar, showing a weak impact of primary treatment on hormone removal. In contrast, both estrogen concentration and estrogenicity decreased during biological treatment, with high removal efficiencies (>90%). Estrone, E-2, and EE2 persisted in the treated water below 10 ng/L, whereas the estrogenicity was lower than 5 ng/L of EEQs. Estrogen mass flux in the effluent and sludge represented less than 2 and 4%, respectively, of the inlet. Consequently, the fraction of estrogens sorbed into the sludge was very small, and biodegradation was the main vehicle for estrogen elimination. This dual approach, comparing chemical and biological analysis, allowed us to confirm that most of the estrogenic activity occurring in this STP, which receives mainly domestic sewage, resulted from sex hormones

    Biomarkers of Morbid Obesity and Prediabetes by Metabolomic Profiling of Human Discordant Phenotypes.

    No full text
    Metabolomic studies aimed to dissect the connection between the development of type 2 diabetes and obesity are still scarce. In the present study, fasting serum from sixty-four adult individuals classified into four sex-matched groups by their BMI [non-obese versus morbid obese] and the increased risk of developing diabetes [prediabetic insulin resistant state versus non-prediabetic non-insulin resistant] was analyzed by LC- and FIA-ESI-MS/MS-driven metabolomic approaches. Altered levels of [lyso]glycerophospholipids was the most specific metabolic trait associated to morbid obesity, particularly lysophosphatidylcholines acylated with margaric, oleic and linoleic acids [lysoPC C17:0: R=-0.56, p=0.0003; lysoPC C18:1: R=-0.61, p=0.0001; lysoPC C18:2 R=-0.64,
    corecore