410 research outputs found
The carboxypeptidase E knockout mouse exhibits endocrinological and behavioral deficits
A carboxypeptidase E (CPE) knockout ( KO) mouse was generated by deletion of exons 4 and 5 from the CPE gene, and its phenotype was characterized. KO mice became obese by 10 - 12 wk of age and reached 60 - 80 g by 40 wk. At this age, body fat content was more than double that in the wild-type (WT) controls. The null animals consumed more food overall, were less physically active during the light phase of the light-dark cycle, and burned fewer calories as fat than WT littermates. Fasting levels of glucose and insulin-like immunoreactivity in plasma were elevated in both male and female KO mice at approximately 20 wk; males recovered fully and females partially from this state by 32 wk. At this time, insulin-like immunoreactivity in the plasma, identified as proinsulin, was 50 - 100 times higher than that of the WT animals. The KO mice showed impaired glucose clearance and were insulin resistant. High levels of leptin and no circulating fully processed cocaine- and amphetamine-related transcript, a peptide that is responsive to leptin-induced feedback inhibition of feeding, were found in serum. The KO mice were subfertile and showed deficits in GnRH processing in the hypothalamus. Behavioral analyses revealed that KO animals showed diminished reactivity to stimuli and had reduced muscle strength and coordination, as well as visual placing and toe-pinch reflexes. These data demonstrate that CPE KO mice display a wide range of neural and endocrine abnormalities and suggest that CPE may have additional physiological roles beyond those ascribed to peptide processing and sorting of prohormones in cells
Multilayer metamaterial absorbers inspired by perfectly matched layers
We derive periodic multilayer absorbers with effective uniaxial properties
similar to perfectly matched layers (PML). This approximate representation of
PML is based on the effective medium theory and we call it an effective medium
PML (EM-PML). We compare the spatial reflection spectrum of the layered
absorbers to that of a PML material and demonstrate that after neglecting gain
and magnetic properties, the absorber remains functional. This opens a route to
create electromagnetic absorbers for real and not only numerical applications
and as an example we introduce a layered absorber for the wavelength of
~m made of SiO and NaCl. We also show that similar cylindrical
core-shell nanostructures derived from flat multilayers also exhibit very good
absorptive and reflective properties despite the different geometry
5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells
<p>Abstract</p> <p>Background</p> <p>Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.</p> <p>Methods</p> <p>The cardiogenic potential of ASCs was analysed by studying the morphological changes after induction, the changes in the cardiogenic genes expression i.e. GATA4, MLC-2v, MLC-2a, NKX2.5, ÎČ-MHC, α-MHC, Atrial natriuretic peptide (ANP), Connexin 43, Cardiac Troponin C, Cardiac Troponin I and myocyte enhancer factor (MEF2C) and the changes of embryonic stem cells genes expression at P5 and P10 using quantitative PCR.</p> <p>Results</p> <p>Our results showed that the induced ASCs did not show significant morphological difference compared to the non-induced ASCs. While quantitative PCR data indicated that most cardiogenic genes and stemness genes expression level decreased after induction at P5 and P10.</p> <p>Conclusion</p> <p>5-azacytidine is insufficient for the cardiogenic induction of the ASCs.</p
Deciphering the Catalytic Machinery in 30S Ribosome Assembly GTPase YqeH
YqeH, a circularly permuted GTPase (cpGTPase), which is conserved across bacteria and eukaryotes including humans is important for the maturation of small (30S) ribosomal subunit in Bacillus subtilis. Recently, we have shown that it binds 30S in a GTP/GDP dependent fashion. However, the catalytic machinery employed to hydrolyze GTP is not recognized for any of the cpGTPases, including YqeH. This is because they possess a hydrophobic substitution in place of a catalytic glutamine (present in Ras-like GTPases). Such GTPases were categorized as HAS-GTPases and were proposed to follow a catalytic mechanism, different from the Ras-like proteins.MnmE, another HAS-GTPase, but not circularly permuted, utilizes a potassium ion and water mediated interactions to drive GTP hydrolysis. Though the G-domain of MnmE and YqeH share only approximately 25% sequence identity, the conservation of characteristic sequence motifs between them prompted us to probe GTP hydrolysis machinery in YqeH, by employing homology modeling in conjunction with biochemical experiments. Here, we show that YqeH too, uses a potassium ion to drive GTP hydrolysis and stabilize the transition state. However, unlike MnmE, it does not dimerize in the transition state, suggesting alternative ways to stabilize switches I and II. Furthermore, we identify a potential catalytic residue in Asp-57, whose recognition, in the absence of structural information, was non-trivial due to the circular permutation in YqeH. Interestingly, when compared with MnmE, helix alpha2 that presents Asp-57 is relocated towards the N-terminus in YqeH. An analysis of the YqeH homology model, suggests that despite such relocation, Asp-57 may facilitate water mediated catalysis, similarly as the catalytic Glu-282 of MnmE. Indeed, an abolished catalysis by D57I mutant supports this inference.An uncommon means to achieve GTP hydrolysis utilizing a K(+) ion has so far been demonstrated only for MnmE. Here, we show that YqeH also utilizes a similar mechanism. While the catalytic machinery is similar in both, mechanistic differences may arise based on the way they are deployed. It appears that K(+) driven mechanism emerges as an alternative theme to stabilize the transition state and hydrolyze GTP in a subset of GTPases, such as the HAS-GTPases
dATF4 regulation of mitochondrial folate-mediated one-carbon metabolism is neuroprotective.
Neurons rely on mitochondria as their preferred source of energy. Mutations in PINK1 and PARKIN cause neuronal death in early-onset Parkinson's disease (PD), thought to be due to mitochondrial dysfunction. In Drosophila pink1 and parkin mutants, mitochondrial defects lead to the compensatory upregulation of the mitochondrial one-carbon cycle metabolism genes by an unknown mechanism. Here we uncover that this branch is triggered by the activating transcription factor 4 (ATF4). We show that ATF4 regulates the expression of one-carbon metabolism genes SHMT2 and NMDMC as a protective response to mitochondrial toxicity. Suppressing Shmt2 or Nmdmc caused motor impairment and mitochondrial defects in flies. Epistatic analyses showed that suppressing the upregulation of Shmt2 or Nmdmc deteriorates the phenotype of pink1 or parkin mutants. Conversely, the genetic enhancement of these one-carbon metabolism genes in pink1 or parkin mutants was neuroprotective. We conclude that mitochondrial dysfunction caused by mutations in the Pink1/Parkin pathway engages ATF4-dependent activation of one-carbon metabolism as a protective response. Our findings show a central contribution of ATF4 signalling to PD that may represent a new therapeutic strategy. A video abstract for this article is available at https://youtu.be/cFJJm2YZKKM
Klebsiella pneumoniae related community-acquired acute lower respiratory infections in CAMBODIA: clinical characteristics and treatment
<p>Abstract</p> <p>Background</p> <p>In many Asian countries, <it>Klebsiella pneumoniae </it>(KP) is the second pathogen responsible for community-acquired pneumonia. Yet, very little is known about <it>KP </it>etiology in ALRI in Cambodia, a country that has one of the weakest medical infrastructures in the region. We present here the first clinico-radiological description of <it>KP </it>community-acquired ALRI in hospitalized Cambodian patients.</p> <p>Methods</p> <p>Through ALRI surveillance in two provincial hospitals, <it>KP </it>was isolated from sputum and blood cultures, and identified by API20E gallery from patients â„ 5 years-old with fever and respiratory symptoms onset â€14 days. Antibiotics susceptibility testing was provided systematically to clinicians when bacteria were isolated. We collected patients' clinical, radiological and microbiological data and their outcome 3 months after discharge. We also compared <it>KP</it>-related with other bacteria-related ALRI to determine risk factors for <it>KP </it>infection.</p> <p>Results</p> <p>From April 2007 to December 2009, 2315 ALRI patients â„ 5 years-old were enrolled including 587 whose bacterial etiology could be assigned. Of these, 47 (8.0%) had <it>KP </it>infection; their median age was 55 years and 68.1% were females. Reported prior medication was high (42.5%). Patients' chest radiographs showed pneumonia (61.3% including 39% that were necrotizing), preexisting parenchyma lesions (29.5%) and pleural effusions alone (4.5%) and normal parenchyma (4.5%). Five patients had severe conditions on admission and one patient died during hospitalization. Of the 39 patients that were hospital discharged, 14 died including 12 within 1 month after discharge. Only 13 patients (28%) received an appropriate antibiotherapy. Extended-spectrum beta-lactamases (ESBL) - producing strains were found in 8 (17.0%) patients. Female gender (Odds ratio (OR) 2.1; <it>p </it>= 0.04) and diabetes mellitus (OR 3.1; <it>p </it>= 0.03) were independent risk factors for <it>KP</it>-related ALRI.</p> <p>Conclusions</p> <p><it>KP </it>ALRI in Cambodia has high fatality rate, are more frequently found in women, and should be considered in diabetic patients. The extremely high frequency of ESBL-producing strains in the study is alarming in the context of uncontrolled antibiotic consumption and in absence of microbiology capacity in most public-sector hospitals.</p
Overfeeding Reduces Insulin Sensitivity and Increases Oxidative Stress, without Altering Markers of Mitochondrial Content and Function in Humans
BACKGROUND: Mitochondrial dysfunction and increased oxidative stress are associated with obesity and type 2 diabetes. High fat feeding induces insulin resistance and increases skeletal muscle oxidative stress in rodents, but there is controversy as to whether skeletal muscle mitochondrial biogenesis and function is altered. METHODOLOGY AND PRINCIPAL FINDINGS: Forty (37±2 y) non-obese (25.6±0.6 kg/m2) sedentary men (n = 20) and women (n = 20) were overfed (+1040±100 kcal/day, 46±1% of energy from fat) for 28 days. Hyperinsulinemic-euglycemic clamps were performed at baseline and day 28 of overfeeding and skeletal muscle biopsies taken at baseline, day 3 and day 28 of overfeeding in a sub cohort of 26 individuals (13 men and 13 women) that consented to having all 3 biopsies performed. Weight increased on average in the whole cohort by 0.6±0.1 and 2.7±0.3 kg at days 3 and 28, respectively (P<0.0001, without a significant difference in the response between men and women (P = 0.4). Glucose infusion rate during the hyperinsulinemic-euglycemic clamp decreased from 54.8±2.8 at baseline to 50.3±2.5 mmol/min/kg FFM at day 28 of overfeeding (P = 0.03) without a significant difference between men and women (P = 0.4). Skeletal muscle protein carbonyls and urinary F2-isoprostanes increased with overfeeding (P,<.05). Protein levels of muscle peroxisome proliferator-activated receptor gamma coactivator-1a (PGC1a) and subunits from complex I, II and V of the electron transport chain were increased at day 3 (all P<0.05) and returned to basal levels at day 28. No changes were detected in muscle citrate synthase activity or ex vivo CO2 production at either time point. CONCLUSIONS: Peripheral insulin resistance was induced by overfeeding, without reducing any of the markers of mitochondrial content that were examined. Oxidative stress was however increased, and may have contributed to the reduction in insulin sensitivity observed.Dorit Samocha-Bonet, Lesley V. Campbell, Trevor A. Mori, Kevin D. Croft, Jerry R. Greenfield, Nigel Turner and Leonie K. Heilbron
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of âs = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTâ„20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60â€pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2â€{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Palmitoylation and membrane cholesterol stabilize Ό-opioid receptor homodimerization and G protein coupling
<p>Abstract</p> <p>Background</p> <p>A cholesterol-palmitoyl interaction has been reported to occur in the dimeric interface of the ÎČ<sub>2</sub>-adrenergic receptor crystal structure. We sought to investigate whether a similar phenomenon could be observed with ÎŒ-opioid receptor (OPRM1), and if so, to assess the role of cholesterol in this class of G protein-coupled receptor (GPCR) signaling.</p> <p>Results</p> <p>C3.55(170) was determined to be the palmitoylation site of OPRM1. Mutation of this Cys to Ala did not affect the binding of agonists, but attenuated receptor signaling and decreased cholesterol associated with the receptor signaling complex. In addition, both attenuation of receptor palmitoylation (by mutation of C3.55[170] to Ala) and inhibition of cholesterol synthesis (by treating the cells with simvastatin, a HMG-CoA reductase inhibitor) impaired receptor signaling, possibly by decreasing receptor homodimerization and Gαi2 coupling; this was demonstrated by co-immunoprecipitation, immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) analyses. A computational model of the OPRM1 homodimer structure indicated that a specific cholesterol-palmitoyl interaction can facilitate OPRM1 homodimerization at the TMH4-TMH4 interface.</p> <p>Conclusions</p> <p>We demonstrate that C3.55(170) is the palmitoylation site of OPRM1 and identify a cholesterol-palmitoyl interaction in the OPRM1 complex. Our findings suggest that this interaction contributes to OPRM1 signaling by facilitating receptor homodimerization and G protein coupling. This conclusion is supported by computational modeling of the OPRM1 homodimer.</p
Observation of associated near-side and away-side long-range correlations in âsNN=5.02ââTeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (ÎÏ) and pseudorapidity (Îη) are measured in âsNN=5.02ââTeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1ââÎŒb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Îη|<5) ânear-sideâ (ÎÏâŒ0) correlation that grows rapidly with increasing ÎŁETPb. A long-range âaway-sideâ (ÎÏâŒÏ) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Îη and ÎÏ) and ÎŁETPb dependence. The resultant ÎÏ correlation is approximately symmetric about Ï/2, and is consistent with a dominant cosâĄ2ÎÏ modulation for all ÎŁETPb ranges and particle pT
- âŠ