92 research outputs found
Manufacturing, high heat flux testing and post mortem analyses of a W-PIM mock-up
In the framework of the European material development programme for fusion power plants beyond the international thermonuclear experimental reactor (ITER), tungsten (W) is an attractive candidate as plasma facing material for future fusion reactors. The selection of tungsten is owing to its physical properties such as the high melting point of 3420 °C, the high strength and thermal conductivity, the low thermal expansion and low erosion rate. Disadvantages are the low ductility and fracture toughness at room temperature, low oxidation resistance, and the manufacturing by mechanical machining such as milling and turning, because it is extremely cost and time intensive.
Powder Injection Molding (PIM) as near-net-shape technology allows the mass production of complex parts, the direct joining of different materials and the development and manufacturing of composite and prototype materials presenting an interesting alternative process route to conventional manufacturing technologies. With its high precision, the PIM process offers the advantage of reduced costs compared to conventional machining. Isotropic materials, good thermal shock resistance, and high shape complexity are typical properties of PIM tungsten.
This contribution describes the fabrication of tungsten monoblocks, in particular for applications in divertor components, via PIM. The assembly to a component (mock-up) was done by Hot Radial Pressing (HRP). Furthermore, this component was characterized by High Heat Flux (HHF) tests at GLADIS and at JUDITH 2, and achieved 1300 cycles @ 20 MW/m².
Post mortem analyses were performed quantifying and qualifying the occurring damage by metallographic and microscopical means. The crystallographic texture was analysed by EBSD measurements. No change in microstructure during testing was observed
Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.European Commission; Consortium for Ocean Leadership 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation
WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described
Real-time plasma state monitoring and supervisory control on TCV
In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation
Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes
Additive manufacturing of high density pure tungsten by electron beam melting
Tungsten is an outstanding material and due to its properties like highest melting point and tensile strength of all natural metals and its high thermal conductivity it is a prime candidate for being used in very harsh environments and for challenging applications like X-ray tubes or as plasma facing material (PFM) in fusion reactors. Unfortunately, high brittle to ductile transition temperature and hardness represent a great challenge for classic manufacturing processes. Additive manufacturing (AM) of tungsten could overcome these limitations and resulting design restrictions. However, AM of tungsten also poses challenges in particular related to the production of material of high density and mechanical stability. Using a selective electron beam melting and a base temperature of 1000 °C of the powder, we were able to produce tungsten with a theoretical density of 99 % without the need of any post-treatment like a second melting step or a redensification by e.g. hot isostatic pressing (HIP). The surface morphology, microstructure, hardness, thermal conductivity and stability against severe transient heat loads were investigated with respect to the relevant building parameters and compared with recrystallized standard W. Besides simple test geometries also more sophisticated ones like monoblocks were successfully realized illustrating the potential of AM for fusion
- …