58 research outputs found

    Lysosomal targeting of the ABC transporter TAPL is determined by membrane-localized charged residues

    Get PDF
    The human lysosomal polypeptide ABC transporter TAPL (ABC subfamily B member 9, ABCB9) transports 6-59-amino-acid-long polypeptides from the cytosol into lysosomes. The subcellular localization of TAPL depends solely on its N-terminal transmembrane domain, TMD0, which lacks conventional targeting sequences. However, the intracellular route and the molecular mechanisms that control TAPL localization remain unclear. Here, we delineated the route of TAPL to lysosomes and investigated the determinants of single trafficking steps. By synchronizing trafficking events by a retention using selective hooks (RUSH) assay and visualizing individual intermediate steps through immunostaining and confocal microscopy, we demonstrate that TAPL takes the direct route to lysosomes. We further identified conserved charged residues within TMD0 transmembrane helices that are essential for individual steps of lysosomal targeting. Substitutions of these residues retained TAPL in the endoplasmic reticulum (ER) or Golgi. We also observed that for release from the ER, a salt bridge between Asp-17 and Arg-57 is essential. An interactome analysis revealed that Yip1-interacting factor homolog B membrane-trafficking protein (YIF1B) interacts with TAPL. We also found that YIF1B is involved in ER-to-Golgi trafficking and interacts with TMD0 of TAPL via its transmembrane domain and that this interaction strongly depends on the newly identified salt bridge within TMD0. These results expand our knowledge about lysosomal trafficking of TAPL and the general function of extra transmembrane domains of ABC transporters

    Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes

    Get PDF
    Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.Peer reviewe

    The concept of RNA-assisted protein folding: the role of tRNA

    Get PDF
    We suggest that tRNA actively participates in the transfer of 3D information from mRNA to peptides - in addition to its well-known, "classical" role of translating the 3-letter RNA codes into the one letter protein code. The tRNA molecule displays a series of thermodynamically favored configurations during translation, a movement which places the codon and coded amino acids in proximity to each other and make physical contact between some amino acids and their codons possible. This specific codon-amino acid interaction of some selected amino acids is necessary for the transfer of spatial information from mRNA to coded proteins, and is known as RNA-assisted protein folding

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    Gadolinium enhancement in newly diagnosed patients with lumbar disc herniations are associated with inflammatory peridiscal tissue reactions - Evidence of fragment degradation?

    No full text
    Objective: It is debatable whether a local inflammatory tissue response caused by herniated disc material contributes to sciatic pain and/or sensorimotor deficits. The impact of inflammatory changes on local tissue remodelling, the healing process and the clinical course of disease remains unclear. Methods: In this prospective observational study, we included a total of 31 patients with a single-level, unilateral lumbar disc herniation. The diagnosis was confirmed by magnetic resonance imaging (MRI)+/- gadolinium. The presence of peridiscal contrast enhancement was correlated with the extent of inflammatory reactions in the herniated fragments as confirmed by immunohistochemistry; clinical symptoms, including the duration of radicular pain; and the incidence of sensorimotor deficits. Results: Peridiscal contrast enhancement was found in 17 patients (55%) and was encasing the adjacent rootlet in 4 cases. There was no significant correlation between gadolinium uptake and the presence of sensorimotor deficits or the duration of radicular symptoms. Degenerative changes were observed in all 31 disc specimens. Overall, 18 cases exhibited increased cellularity in the marginal areas, which were mostly populated by CD68(+) macrophages and fibroblasts. Additionally, these areas displayed a limited number of CD3(+) T-lymphocytes and different degrees of concomitant neovascularisation, which represented a chronic and unspecific immune response. Peridiscal contrast enhancement on MRI was significantly correlated with the histopathological characteristics of tissue inflammation. However, no correlation was found between the histological evidence and the degree of inflammation and neurological symptoms. Conclusion: Gadolinium-enhanced MRI is a sensitive method to detect unspecific inflammatory reactions in therapy-naive disc herniations. However, the neuroradiological and histological evidence of peridiscal inflammation was not correlated with the severity of pain or sensorimotor deficits in our patients. Additional research is needed because the occurrence of local inflammation may indicate an ongoing degradation of herniated fragments and thus be helpful in therapeutic decision-making. (C) 2014 Elsevier B.V. All rights reserved
    corecore