28 research outputs found

    Preparation and Characterization of Ethosomes for Topical delivery of Aceclofenac

    No full text
    The aim of present study was to prepare and characterized ethosomes of aceclofenac which may deliver the drug to targeted site more efficiently than marketed gel preparation and also overcome the problems related with oral administration of drug. The formulations were prepared with varying the quantity of ethanol 10-50% (v/v), lecithin 1-4% (w/v), propylene glycol 5-20% (v/v) and evaluated for their vesicle size, shape and surface morphology, entrapment efficiency and in vitro drug permeation study. Ethosomes of average size of 1.112 μm with a spherical shape bearing smooth surface were observed by transmission electron microscopy and surface electron microscopy. The maximum entrapment of ethosomes was 91.06±0.79%. Cumulative amount of drug permeated through the biological membrane was found to be in the range of 0.26±0.014 to 0.49±0.032 mg/cm2. Stability profile of prepared system was assessed for 45 days and the results revealed that very less degradation of drug was observed during storage condition

    Therapeutic and cosmeceutical potential of ethosomes: An overview

    No full text
    The main disadvantage of transdermal drug delivery is the poor penetration of most compounds into the human skin. The main barrier of the skin is located within its uppermost layer, the stratum corneum (SC). Several approaches have been developed to weaken this skin barrier. One of the approaches for increasing the skin penetration of drugs and many cosmetic chemicals is the use of vesicular systems, such as, liposomes and ethosomes. Ethosomes are phospholipid-based elastic nanovesicles containing a high content of ethanol (20–45%). Ethanol is known as an efficient permeation enhancer and has been added in the vesicular systems to prepare elastic nanovesicles. It can interact with the polar head group region of the lipid molecules, resulting in the reduction of the melting point of the stratum corneum lipid, thereby increasing lipid fluidity and cell membrane permeability. The high flexibility of vesicular membranes from the added ethanol permits the elastic vesicles to squeeze themselves through the pores, which are much smaller than their diameters. Ethosomal systems are much more efficient in delivering substances to the skin in the terms of quantity and depth, than either conventional liposomes or hydroalcoholic solutions. The scope of this small review is to introduce the novel concept of ethosomes and to describe some approaches and mechanisms of stimulating topical and transdermal products with ethosomes

    Peripherally Restricted Cannabinoids for the Treatment of Pain

    No full text
    The use of cannabinoids for the treatment of chronic diseases has increased in the United States, with 23 states having legalized the use of marijuana. Although currently available cannabinoid compounds have shown effectiveness in relieving symptoms associated with numerous diseases, the use of cannabis or cannabinoids is still controversial mostly due to their psychotropic effects (e.g., euphoria, laughter) or central nervous system (CNS)-related undesired effects (e.g., tolerance, dependence). A potential strategy to use cannabinoids for medical conditions without inducing psychotropic or CNS-related undesired effects is to avoid their actions in the CNS. This approach could be beneficial for conditions with prominent peripheral pathophysiologic mechanisms (e.g., painful diabetic neuropathy, chemotherapy-induced neuropathy). In this article, we discuss the scientific evidence to target the peripheral cannabinoid system as an alternative to cannabis use for medical purposes, and we review the available literature to determine the pros and cons of potential strategies that can be used to this end

    VCE-004.3, a cannabidiol aminoquinone derivative, prevents bleomycin-induced skin fibrosis and inflammation through PPARγ- and CB 2

    No full text
    The endocannabinoid system and PPARγ are important targets for the development of novel compounds against fibrotic diseases such as systemic sclerosis (SSc), also called scleroderma. The aim of this study was to characterize VCE-004.3, a novel cannabidiol derivative, and study its anti-inflammatory and anti-fibrotic activities. The binding of VCE-004.3 to CB1 and CB2 receptors and PPARγ and its effect on their functional activities were studied in vitro and in silico. Anti-fibrotic effects of VCE-004.3 were investigated in NIH-3T3 fibroblasts and human dermal fibroblasts. To assess its anti-inflammatory and anti-fibrotic efficacy in vivo, we used two complementary models of bleomycin-induced fibrosis. Its effect on ERK1/2 phosphorylation induced by IgG from SSc patients and PDGF was also investigated. VCE-004.3 bound to and activated PPARγ and CB2 receptors and antagonized CB1 receptors. VCE-004.3 bound to an alternative site at the PPARγ ligand binding pocket. VCE-004.3 inhibited collagen gene transcription and synthesis and prevented TGFβ-induced fibroblast migration and differentiation to myofibroblasts. It prevented skin fibrosis, myofibroblast differentiation and ERK1/2 phosphorylation in bleomycin-induced skin fibrosis. Furthermore, it reduced mast cell degranulation, macrophage activation, T-lymphocyte infiltration, and the expression of inflammatory and profibrotic factors. Topical application of VCE-004.3 also alleviated skin fibrosis. Finally, VCE-004.3 inhibited PDGF-BB- and SSc IgG-induced ERK1/2 activation in fibroblasts. VCE-004.3 is a novel semisynthetic cannabidiol derivative that behaves as a dual PPARγ/CB2 agonist and CB1 receptor modulator that could be considered for the development of novel therapies against different forms of scleroderma

    Epigenetic control of skin differentiation genes by phytocannabinoids

    No full text
    BACKGROUND AND PURPOSE: Endocannabinoid signalling has been shown to have a role in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we investigated the possible epigenetic regulation of these genes by several phytocannabinoids, plant-derived cannabinoids that have the potential to be novel therapeutics for various human diseases.EXPERIMENTAL APPROACH: The effects of cannabidiol, cannabigerol and cannabidivarin on the expression of skin differentiation genes keratins 1 and 10, involucrin and transglutaminase 5, as well as on DNA methylation of keratin 10 gene, were investigated in human keratinocytes (HaCaT cells). The effects of these phytocannabinoids on global DNA methylation and the activity and expression of four major DNA methyltransferases (DNMT1, 3a, 3b and 3L) were also examined.KEY RESULTS: Cannabidiol and cannabigerol significantly reduced the expression of all the genes tested in differentiated HaCaT cells, by increasing DNA methylation of keratin 10 gene, but cannabidivarin was ineffective. Remarkably, cannabidiol reduced keratin 10 mRNA through a type-1 cannabinoid (CB1 ) receptor-dependent mechanism, whereas cannabigerol did not affect either CB1 or CB2 receptors of HaCaT cells. In addition, cannabidiol, but not cannabigerol, increased global DNA methylation levels by selectively enhancing DNMT1 expression, without affecting DNMT 3a, 3b or 3L.CONCLUSIONS AND IMPLICATIONS: These findings show that the phytocannabinoids cannabidiol and cannabigerol are transcriptional repressors that can control cell proliferation and differentiation. This indicates that they (especially cannabidiol) have the potential to be lead compounds for the development of novel therapeutics for skin diseases.[...
    corecore