373 research outputs found

    Evaluation of the risk factors influencing the spread of caseous lymphadenitis in goat herds

    Get PDF
    Epidemiological studies on caseous lymphadenitis were carried out in Poland in 1996 and 2002 among goat herds covered by a milk recording program. Between-herd seroprevalence was 13.2% in 1996 and increased to 62.5% in 2002. The average size of seropositive herds was statistically significantly higher than that of seronegative ones, however there was no statistically significant difference in the age between the herds. A statistically significant prevalence ratio (PR) was identified and relevant attributable risk for exposed animals (ARexp) was calculated for the following risk factors: presence of seropositive males in a herd (PR=8.350; ARexp=0.651), presence of superficial abscesses in animals (PR=6.142; ARexp=0.620), presence of respiratory signs (PR=2.900; ARexp=0.393), presence of animals in poor condition in a herd (PR=2.774; ARexp=0.390) and occurrence of reproductive failures in a herd (PR=1.798; ARexp=0.230). Purchase of animals from abroad, mastitis and husbandry conditions (housing system, grazing system, hygienic conditions) were not shown to be statistically significant risk factors

    Life history correlates of faecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus

    Get PDF
    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts

    Viral detection by electron microscopy: past, present and future.

    Get PDF
    International audienceViruses are very small and most of them can be seen only by TEM (transmission electron microscopy). TEM has therefore made a major contribution to virology, including the discovery of many viruses, the diagnosis of various viral infections and fundamental investigations of virus-host cell interactions. However, TEM has gradually been replaced by more sensitive methods, such as the PCR. In research, new imaging techniques for fluorescence light microscopy have supplanted TEM, making it possible to study live cells and dynamic interactions between viruses and the cellular machinery. Nevertheless, TEM remains essential for certain aspects of virology. It is very useful for the initial identification of unknown viral agents in particular outbreaks, and is recommended by regulatory agencies for investigation of the viral safety of biological products and/or the cells used to produce them. In research, only TEM has a resolution sufficiently high for discrimination between aggregated viral proteins and structured viral particles. Recent examples of different viral assembly models illustrate the value of TEM for improving our understanding of virus-cell interactions

    Urban Wildlife Crisis: Australian Silver Gull Is a Bystander Host to Widespread Clinical Antibiotic Resistance.

    Get PDF
    The Australian silver gull is an urban-adapted species that frequents anthropogenic waste sites. The enterobacterial flora of synanthropic birds often carries antibiotic resistance genes. Whole-genome sequence analyses of 425 Escherichia coli isolates from cloacal swabs of chicks inhabiting three coastal sites in New South Wales, Australia, cultured on media supplemented with meropenem, cefotaxime, or ciprofloxacin are reported. Phylogenetically, over 170 antibiotic-resistant lineages from 96 sequence types (STs) representing all major phylogroups were identified. Remarkably, 25 STs hosted the carbapenemase gene blaIMP-4, sourced only from Five Islands. Class 1 integrons carrying blaIMP and blaOXA alongside blaCTX-M and qnrS were notable. Multiple plasmid types mobilized blaIMP-4 and blaOXA-1, and 121 isolates (28%) carried either a ColV-like (18%) or a pUTI89-like (10%) F virulence plasmid. Phylogenetic comparisons to human isolates provided evidence of interspecies transmission. Our study underscores the importance of bystander species in the transmission of antibiotic-resistant and pathogenic E. coli. IMPORTANCE By compiling various genomic and phenotypic data sets, we have provided one of the most comprehensive genomic studies of Escherichia coli isolates from the Australian silver gull, on media containing clinically relevant antibiotics. The analysis of genetic structures capturing antimicrobial resistance genes across three gull breeding colonies in New South Wales, Australia, and comparisons to clinical data have revealed a range of trackable genetic signatures that highlight the broad distribution of clinical antimicrobial resistance in more than 170 different lineages of E. coli. Conserved truncation sizes of the class 1 integrase gene, a key component of multiple-drug resistance structures in the Enterobacteriaceae, represent unique deletion events that are helping to link seemingly disparate isolates and highlight epidemiologically relevant data between wildlife and clinical sources. Notably, only the most anthropogenically affected of the three sites (Five Islands) was observed to host carbapenem resistance, indicating a potential reservoir among the sites sampled

    A Relationship Between Avian Foraging Behavior and Infestation by Trombiculid Larvae (Acari) in Chiapas, Mexico

    Full text link
    Birds face varying risk from parasites as they select and utilize habitat. Unfortunately, behavioral and habitat correlates of parasitism in birds are not well documented. This study combines data from a foraging behavior study with results from a banding study to test whether behavior and habitat affect an ectoparasite infestation by trombiculid mite (chigger) larvae on the bird community found in two different coffee agroecosystems in Chiapas, Mexico. Individuals from bird species with regular prevalence ( i.e. , infestation) foraged more frequently in lower vegetative layers and had significantly lower foraging height than those from species with little or no prevalence, suggesting that foraging near the ground increases exposure risk to chigger larvae. Using linear regression, across species, parasite prevalence decreased with increasing average foraging height. Lower infestation rates were found in coffee agroecosystems with higher management intensity ( i.e. , less shade and drier conditions), suggesting that management activities influence infestation rates. Consequently, drier tropical habitats may pose less risk to birds from ectoparasites, though seasonal prevalence was highest during the winter dry season. Although no direct link was found between host condition and infestation by chigger larvae on the wintering grounds, birds were sampled during the middle of the over-wintering period, not the end when infestation could affect birds fattening for migration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72078/1/j.1744-7429.2007.00370.x.pd

    CTX-M15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents

    Get PDF
    Objectives: The global occurrence of antibiotic resistance genes in bacteria in water environments is an increasing concern. Treated wastewater was sampled daily over a 45 day period from the outflow of a municipal wastewater treatment plant in Brno, Czech Republic, and examined for extended-spectrum b-lactamase (ESBL)-producing bacteria. Methods: Water samples were cultivated on MacConkey agar with cefotaxime (2 mg/L) and individual colonies were examined for ESBL production. Phenotypic ESBL-positive bacteria identified as Escherichia coli or Klebsiella spp. were tested for the presence of antibiotic resistance genes, the virulence gene afa/dra and the bla CTX-M upstream region. Genetic relatedness was analysed by PFGE, multilocus sequence typing and plasmid analysis. Results: A total of 68 ESBL-producing Enterobacteriaceae isolates were detected in 34 out of 45 wastewater samples. ESBL-producing isolates included 26 E. coli isolates, 4 Klebsiella pneumoniae isolates and 1 Klebsiella oxytoca isolate. The pandemic and multiresistant B2-O25b-ST131 clone was predominant, being detected among 19 E. coli isolates, and 17 of the B2-O25b-ST131 isolates were positive for the FIA replicon and the afa/dra operon and had an IS26 element flanking bla CTX-M-15 . Seventeen of the B2-O25b-ST131 isolates showed closely related PFGE profiles (defined by 84% band similarity) and belonged to identical clonal groups. Conclusions: The results highlight the inadequacy of the treatment process in removing multiresistant bacteria from municipal wastewater and point to a risk of transmission of clinically important multiresistant strains, such as the pandemic ST131 clone, to the environment. This is the first study demonstrating the pandemic ST131 clone in wastewater

    Transferable integrons of Gram-negative bacteria isolated from the gut of a wild boar in the buffer zone of a national park

    Get PDF
    The aim of this study was to determine the presence of integron-bearing Gram-negative bacteria in the gut of a wild boar (Sus scrofa L.) shot in the buffer zone of a national park. Five Gram-negative strains of Escherichia coli, Serratia odorifera, Hafnia alvei and Pseudomonas sp. were isolated. Four of these strains had class 2 integrase (intI2), and one harbored class 1 integrase (intI1). The integron-positive strains were multiresistant, i.e., resistant to at least three unrelated antibiotics. All of the integrons were transferred to E. coli J-53 (RifR) in a conjugation assay. The results showed that a number of multiresistant, integron-containing bacterial strains of different genera may inhabit a single individual of a wild animal, allowing the possibility of transfer of antimicrobial resistance genes

    Assessment of Microwave/UV/O3 in the Photo-Catalytic Degradation of Bromothymol Blue in Aqueous Nano TiO2 Particles Dispersions

    Get PDF
    In this study, a microwave/UV/TiO2/ozone/H2O2 hybrid process system, in which various techniques that have been used for water treatment are combined, is evaluated to develop an advanced technology to treat non-biodegradable water pollutants efficiently. In particular, the objective of this study is to develop a novel advanced oxidation process that overcomes the limitations of existing single-process water treatment methods by adding microwave irradiation to maximize the formation of active intermediate products, e.g., OH radicals, with the aid of UV irradiation by microwave discharge electrodeless lamp, photo-catalysts, and auxiliary oxidants. The results of photo-catalytic degradation of BTB showed that the decomposition rate increased with the TiO2 particle dosages and microwave intensity. When an auxiliary oxidant such as ozone or hydrogen peroxide was added to the microwave-assisted photo-catalysis, however, a synergy effect that enhanced the reaction rate considerably was observed

    Host dispersal shapes the population structure of a tick-borne bacterial pathogen

    Get PDF
    Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.Peer reviewe

    Molecular Characterization of a 21.4 Kilobase Antibiotic Resistance Plasmid from an α-Hemolytic Escherichia coli O108:H- Human Clinical Isolate

    Get PDF
    This study characterizes the 21.4 kilobase plasmid pECTm80 isolated from Escherichia coli strain 80, an α hemolytic human clinical diarrhoeal isolate (serotype O108:H-). DNA sequence analysis of pECTm80 revealed it belonged to incompatibility group X1, and contained plasmid partition and toxin-antitoxin systems, an R6K-like triple origin (ori) replication system, genes required for replication regulation, insertion sequences IS1R, ISEc37 and a truncated transposase gene (Tn3-like ΔtnpA) of the Tn3 family, and carried a class 2 integron. The class 2 integron of pECTm80 contains an intact cassette array dfrA1-sat2, encoding resistance to trimethoprim and streptothricin, and an aadA1 gene cassette truncated by the insertion of IS1R. The complex plasmid replication system includes α, β and γ origins of replication. Pairwise BLASTn comparison of pECTm80 with plasmid pE001 reveals a conserved plasmid backbone suggestive of a common ancestral lineage. Plasmid pECTm80 is of potential clinical importance, as it carries multiple genes to ensure its stable maintenance through successive bacterial cell divisions and multiple antibiotic resistance genes
    corecore