48 research outputs found

    Amisulpride augmentation in clozapine-unresponsive schizophrenia: A double-blind, placebo-controlled, randomised trial of clinical and cost-effectiveness.

    Get PDF
    BACKGROUND: When treatment-refractory schizophrenia shows an insufficient response to a trial of clozapine, clinicians commonly add a second antipsychotic, despite the lack of robust evidence to justify this practice. OBJECTIVES: The main objectives of the study were to establish the clinical effectiveness and cost-effectiveness of augmentation of clozapine medication with a second antipsychotic, amisulpride, for the management of treatment-resistant schizophrenia. DESIGN: The study was a multicentre, double-blind, individually randomised, placebo-controlled trial with follow-up at 12 weeks. SETTINGS: The study was set in NHS multidisciplinary teams in adult psychiatry. PARTICIPANTS: Eligible participants were people aged 18-65 years with treatment-resistant schizophrenia unresponsive, at a criterion level of persistent symptom severity and impaired social function, to an adequate trial of clozapine monotherapy. INTERVENTIONS: Interventions comprised clozapine augmentation over 12 weeks with amisulpride or placebo. Participants received 400 mg of amisulpride or two matching placebo capsules for the first 4 weeks, after which there was a clinical option to titrate the dosage of amisulpride up to 800 mg or four matching placebo capsules for the remaining 8 weeks. MAIN OUTCOME MEASURES: The primary outcome measure was the proportion of 'responders', using a criterion response threshold of a 20% reduction in total score on the Positive and Negative Syndrome Scale. RESULTS: A total of 68 participants were randomised. Compared with the participants assigned to placebo, those receiving amisulpride had a greater chance of being a responder by the 12-week follow-up (odds ratio 1.17, 95% confidence interval 0.40 to 3.42) and a greater improvement in negative symptoms, although neither finding had been present at 6-week follow-up and neither was statistically significant. Amisulpride was associated with a greater side effect burden, including cardiac side effects. Economic analyses indicated that amisulpride augmentation has the potential to be cost-effective in the short term [net saving of between £329 and £2011; no difference in quality-adjusted life-years (QALYs)] and possibly in the longer term. LIMITATIONS: The trial under-recruited and, therefore, the power of statistical analysis to detect significant differences between the active and placebo groups was limited. The economic analyses indicated high uncertainty because of the short duration and relatively small number of participants. CONCLUSIONS: The risk-benefit of amisulpride augmentation of clozapine for schizophrenia that has shown an insufficient response to a trial of clozapine monotherapy is worthy of further investigation in larger studies. The size and extent of the side effect burden identified for the amisulpride-clozapine combination may partly reflect the comprehensive assessment of side effects in this study. The design of future trials of such a treatment strategy should take into account that a clinical response may be not be evident within the 4- to 6-week follow-up period usually considered adequate in studies of antipsychotic treatment of acute psychotic episodes. Economic evaluation indicated the need for larger, longer-term studies to address uncertainty about the extent of savings because of amisulpride and impact on QALYs. The extent and nature of the side effect burden identified for the amisulpride-clozapine combination has implications for the nature and frequency of safety and tolerability monitoring of clozapine augmentation with a second antipsychotic in both clinical and research settings. TRIAL REGISTRATION: EudraCT number 2010-018963-40 and Current Controlled Trials ISRCTN68824876. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 21, No. 49. See the NIHR Journals Library website for further project information

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities

    No full text
    <div><p>We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products—including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4–6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.</p></div

    Effect of Temperature and Process on Quantity and Composition of Laboratory-generated Bitumen Emissions

    No full text
    <div><p>In this study we investigated the impact of temperature on emissions as related to various bitumen applications and processes used in commercial products. Bitumen emissions are very complex and can be influenced in quantity and composition by differences in crude source, refining processes, application temperature, and work practices. This study provided a controlled laboratory environment to study five bitumen test materials from three European refineries; three paving grade, one used for primarily roofing and some paving applications, and one oxidized industrial specialty bitumen. Emissions were generated at temperatures between 140°C and 230°C based on typical application temperatures of each product. Emissions were characterized by aerodynamic particle size, total organic matter (TOM), simulated distillation, 40 individual PACs, and fluorescence (FL-PACs) spectroscopy.</p><p>Results showed that composition of bitumen emissions is influenced by temperature under studied experimental conditions. A distinction between the oxidized bitumen with flux oil (industrial specialty bitumen) and the remaining bitumens was observed. Under typical temperatures used for paving (150°C–170°C), the TOM and PAC concentrations in the emissions were low. However, bitumen with flux oil produced significantly higher emissions at 230°C, laden with high levels of PACs. Flux oil in this bitumen mixture enhanced release of higher boiling-ranged compounds during application conditions.</p><p>At 200°C and below, concentrations of 4–6 ring PACs were ≤6.51 μg/m<sup>3</sup> for all test materials, even when flux oil was used. Trends learned about emission temperature-process relationships from this study can be used to guide industry decisions to reduce worker exposure during processing and application of hot bitumen.</p></div
    corecore