131 research outputs found

    Cultivating career ready skills: Weaving experiential learning opportunities throughout the curriculum

    Get PDF
    Situating student learning in “real world” environments provides unique learning opportunities that cannot be replicated in a classroom setting. It offers a meaningful experience that allows students to apply their knowledge, adapt to constantly changing environments, and gain valuable insights. In this session I will present a scaffolded experiential learning approach that entails sequential progression in extent and intensity, gradually preparing the students to apply academic learning in a professional setting. Experiential learning opportunities are introduced early on, and are woven throughout the program. Beyond cultivating career-ready professional skills, the experiential learning is designed to bring awareness to “why should we care” with the goal of eliciting motivation and inspiration. Participants will be invited to share alternative strategies to prompt student motivation and shift focus from grades to the value of learning

    Integrating learning spaces: Engaging students in-person and online

    Get PDF
    This session features the implementation of an active learning cycle, integrating in-class and out of class learning spaces. To facilitate out of class interactions and collaborative engagement with the material, I used a social annotation platform Perusall, where students analyzed scientific publications collaboratively in preparation for a discussion-based seminar session. The asynchronous group interaction prompted active reading and peer-to-peer learning, created a sense of community and facilitated social interactions both in and outside of class. Students were engaged in conversation across learning spaces and actively participated in a meaningful way. In-class discussions were tailored to address the gaps, solidify the concepts, and make meaningful connections. The active learning cycle inspired motivation and engagement, and greatly enhanced student’s ability to apply knowledge and get a firm grasp of complex concepts. The insights gleaned from “peering into the minds” of my students, helped “tailor” the knowledge transfer to suit that cohort of students. Furthermore, it informed my teaching in the 2nd and 3rd year courses leading to this course. The impact goes beyond “backwards course design” and in fact enables “backwards curricular design”. Participants will have an opportunity to try the platform out and explore it as a potential resource. To participate please bring a laptop, so you can access the platform and demo the simulation

    Cultivating a questioning mind: Student-led question composition in large courses

    Get PDF
    Asking a good question is not a trivial task. It requires deep comprehension and concept integration. To facilitate critical thinking and mastering of foundational concepts in a large Genetics course (~1200 students) at the second-year undergraduate level, we decided to actively engage students in question creation. We used “Quizzical”, an online platform developed by Prof. Dan Riggs (Riggs et al., 2020, https://doi.org/10.1187/cbe.19-09-0189). Via this platform, students are tasked with the creation of multiple-choice questions. For each of the suggested answer choices, students are required to provide a comprehensive justification. This includes justification for the correct answer as well as for each of the distractors. An added advantage of the platform is the generation of student-authored quiz banks that can be used for practice and participation marks. Since the questions are created by multiple authors, they included diverse point of views, which we learned the students greatly appreciated. To foster metacognition and encourage a shift from perceiving learning as memorization of information, students were encouraged to create application-based questions. Higher grades were granted to questions that creatively integrated multiple concepts or required knowledge application. In order to inform our teaching practices, pilot studies were conducted in Fall 2021 and Summer 2022, where students were asked to complete an anonymous survey regarding their experiences with Quizzical, and the feedback that we received was positive overall. We will discuss the learning outcomes achieved by engaging the students in question creation, and will share quantitative and formative feedback received from our students. This research was approved by our institutional research ethics board

    Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells

    Get PDF
    Apoptotic and autophagic cell death have been implicated, on the basis of morphological and biochemical criteria, in neuronal loss occurring in neurodegenerative diseases and it has been shown that they may overlap. We have studied the relationship between apoptosis and autophagic cell death in cerebellar granule cells (CGCs) undergoing apoptosis following serum and potassium deprivation. We found that apoptosis is accompanied by an early and marked proliferation of autophagosomal-lysosomal compartments as detected by electron microscopy and immunofluorescence analysis. Autophagy is blocked by hrIGF-1 and forskolin, two well-known inhibitors of CGC apoptosis, as well as by adenovirus-mediated overexpression of Bcl-2. 3-Methyladenine (3-MA) an inhibitor of autophagy, not only arrests this event but it also blocks apoptosis. The neuroprotective effect of 3-MA is accompanied by block of cytochrome c (cyt c) release in the cytosol and by inhibition of caspase-3 activation which, in turn, appears to be mediated by cathepsin B, as CA074-Me, a selective inhibitor of this enzyme, fully blocks the processing of pro-caspase-3. Immunofluorescence analysis demonstratesd that cathepsin B, normally confined inside the lysosomal-endosomal compartment, is released during apoptosis into the cytosol where this enzyme may act as an execution protease. Collectively, these observations indicate that autophagy precedes and is causally connected with the subsequent onset of programmed death

    The Tripartite Motif Protein MADD-2 Functions with the Receptor UNC-40 (DCC) in Netrin-Mediated Axon Attraction and Branching

    Get PDF
    Neurons innervate multiple targets by sprouting axon branches from a primary axon shaft. We show here that the ventral guidance factor unc-6 (Netrin), its receptor unc-40 (DCC), and the gene madd-2 stimulate ventral axon branching in C. elegans chemosensory and mechanosensory neurons. madd-2 also promotes attractive axon guidance to UNC-6 and assists unc-6- and unc-40-dependent ventral recruitment of the actin regulator MIG-10 in nascent axons. MADD-2 is a tripartite motif protein related to MID-1, the causative gene for the human developmental disorder Opitz syndrome. MADD-2 and UNC-40 proteins preferentially localize to a ventral axon branch that requires their function; genetic results indicate that MADD-2 potentiates UNC-40 activity. Our results identify MADD-2 as an UNC-40 cofactor in axon attraction and branching, paralleling the role of UNC-5 in repulsion, and provide evidence that targeting of a guidance factor to specific axonal branches can confer differential responsiveness to guidance cues.National Institutes of Health (U.S.) (Grant number GM0680678

    Drep-2 is a novel synaptic protein important for learning and memory

    Get PDF
    CIDE-N domains mediate interactions between the DNase Dff40/CAD and its inhibitor Dff45/ICAD. In this study, we report that the CIDE-N protein Drep-2 is a novel synaptic protein important for learning and behavioral adaptation. Drep-2 was found at synapses throughout the Drosophila brain and was strongly enriched at mushroom body input synapses. It was required within Kenyon cells for normal olfactory short- and intermediate-term memory. Drep-2 colocalized with metabotropic glutamate receptors (mGluRs). Chronic pharmacological stimulation of mGluRs compensated for drep-2 learning deficits, and drep-2 and mGluR learning phenotypes behaved non-additively, suggesting that Drep 2 might be involved in effective mGluR signaling. In fact, Drosophila fragile X protein mutants, shown to benefit from attenuation of mGluR signaling, profited from the elimination of drep-2. Thus, Drep-2 is a novel regulatory synaptic factor, probably intersecting with metabotropic signaling and translational regulation

    Unc-51/ATG1 Controls Axonal and Dendritic Development via Kinesin-Mediated Vesicle Transport in the Drosophila Brain

    Get PDF
    Background:Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport.Methodology/Principal Findings:In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II), an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM) and No distributive disjunction (Nod), remains unaltered. Genetic analyses of kinesin light chain (Klc) and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations.Conclusions/Significance:Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of developing neurons

    The Caenorhabditis elegans Elongator Complex Regulates Neuronal α-tubulin Acetylation

    Get PDF
    Although acetylated α-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate α-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of α-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of α-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating α-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3) and in a scaffold subunit (Elp1) have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology

    The Rac GTP Exchange Factor TIAM-1 Acts with CDC-42 and the Guidance Receptor UNC-40/DCC in Neuronal Protrusion and Axon Guidance

    Get PDF
    The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions
    corecore