234 research outputs found

    A Health Impact Assessment of Proposed Public Transit Service Cuts and Fare Increases in Boston, Massachusetts

    Get PDF
    Transportation decisions have health consequences that are often not incorporated into policy-making processes. Health Impact Assessment (HIA) is a process that can be used to evaluate health effects of transportation policy. We present a rapid HIA evaluating health and economic effects of proposed fare increases and service cuts to Boston, Massachusetts’ public transit system. We used transportation modeling in concert with tools allowing for quantification and monetization of multiple pathways. We estimated health and economic costs of proposed transit system changes to be hundreds of millions of dollars per year, exceeding the budget gap the transit authority was required to close. Significant health pathways included crashes, air pollution, and physical activity. The HIA enabled stakeholders to advocate for more modest fare increases and service cuts, which were eventually adopted. This HIA was among the first to quantify and monetize multiple pathways linking transportation decisions with health and economic outcomes, using approaches that could be applied in different settings. Including health costs in transportation decisions can lead to policy choices with both economic and public health benefits

    Risk-based Prioritization among Air Pollution Control Strategies in the Yangtze River Delta, China

    Get PDF
    Background: The Yangtze River Delta (YRD) in China is a densely populated region with recent dramatic increases in energy consumption and atmospheric emissions. Objectives: We studied how different emission sectors influence population exposures and the corresponding health risks, to inform air pollution control strategy design. Methods: We applied the Community Multiscale Air Quality (CMAQ) Modeling System to model the marginal contribution to baseline concentrations from different sectors. We focused on nitrogen oxide (NOx) control while considering other pollutants that affect fine particulate matter [aerodynamic diameter ≤2.5μm(PM2.5)\leq 2.5 \mu m (PM_{2.5})] and ozone concentrations. We developed concentration–response (C-R) functions for PM2.5PM_{2.5} and ozone mortality for China to evaluate the anticipated health benefits. Results: In the YRD, health benefits per ton of emission reductions varied significantly across pollutants, with reductions of primary PM2.5PM_{2.5} from the industry sector and mobile sources showing the greatest benefits of 0.1 fewer deaths per year per ton of emission reduction. Combining estimates of health benefits per ton with potential emission reductions, the greatest mortality reduction of 12,000 fewer deaths per year [95% confidence interval (CI), 1,200–24,000] was associated with controlling primary PM2.5PM_{2.5} emissions from the industry sector and reducing sulfur dioxide (SO2)(SO_2) from the power sector, respectively. Benefits were lower for reducing NOxNO_x emissions given lower consequent reductions in the formation of secondary PM2.5PM_{2.5} (compared with SO2SO_2) and increases in ozone concentrations that would result in the YRD. Conclusions: Although uncertainties related to C-R functions are significant, the estimated health benefits of emission reductions in the YRD are substantial, especially for sectors and pollutants with both higher health benefits per unit emission reductions and large potential for emission reductions

    PDBe-KB: a community-driven resource for structural and functional annotations.

    Get PDF
    The Protein Data Bank in Europe-Knowledge Base (PDBe-KB, https://pdbe-kb.org) is a community-driven, collaborative resource for literature-derived, manually curated and computationally predicted structural and functional annotations of macromolecular structure data, contained in the Protein Data Bank (PDB). The goal of PDBe-KB is two-fold: (i) to increase the visibility and reduce the fragmentation of annotations contributed by specialist data resources, and to make these data more findable, accessible, interoperable and reusable (FAIR) and (ii) to place macromolecular structure data in their biological context, thus facilitating their use by the broader scientific community in fundamental and applied research. Here, we describe the guidelines of this collaborative effort, the current status of contributed data, and the PDBe-KB infrastructure, which includes the data exchange format, the deposition system for added value annotations, the distributable database containing the assembled data, and programmatic access endpoints. We also describe a series of novel web-pages-the PDBe-KB aggregated views of structure data-which combine information on macromolecular structures from many PDB entries. We have recently released the first set of pages in this series, which provide an overview of available structural and functional information for a protein of interest, referenced by a UniProtKB accession

    Measuring the predictability of life outcomes with a scientific mass collaboration.

    Get PDF
    How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. Despite using a rich dataset and applying machine-learning methods optimized for prediction, the best predictions were not very accurate and were only slightly better than those from a simple benchmark model. Within each outcome, prediction error was strongly associated with the family being predicted and weakly associated with the technique used to generate the prediction. Overall, these results suggest practical limits to the predictability of life outcomes in some settings and illustrate the value of mass collaborations in the social sciences

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist
    • …
    corecore