116 research outputs found

    Pilot study: potential transcription markers for adult attention-deficit hyperactivity disorder in whole blood

    Get PDF
    Attention-deficit hyperactivity disorder (ADHD) is a common behavioural disorder that affects not only children and adolescents but also adults; however, diagnosis of adult ADHD is difficult because patients seem to have reduced externalized behaviour. ADHD is a multifactorial disorder in which many genes, all with small effects, are thought to cause the disorder in the presence of unfavourable environmental conditions. Therefore, in this pilot study, we explored the expression profile of a list of previously established candidate genes in peripheral blood samples from adult ADHD subjects (n=108) and compared these results with those of healthy controls (n=35). We demonstrate that combining the gene expression levels of dopamine transporter (SLC6A3), dopamine D5 receptor, tryptophan hydroxylase-1, and SNAP25 as predictors in a regression model resulted in sensitivity and specificity of over 80% (ROC: max R 2=0.587, AUC=0.917, P<0.001, 95% CI: 0.900-0.985). In conclusion, the combination of these four genes could represent a potential method for estimating risk and could be of diagnostic value for ADHD. Nevertheless, further investigation in a larger independent population including different subtypes of ADHD (inattentive, hyperactive, or combined type) patients is required to obtain more specific sets of biomarkers for each subtype as well as to differentiate between child, adolescent, and adulthood form

    Bringing a Machine Learning Based Novelty Detection Software Tool from Research to Production

    Get PDF
    This paper presents the process of bringing a machine learning based novelty detection software tool from research to production. Moreover, it sums up the necessary changes that needed to be done for developing a scientific software library into a software product with an application in space operations. This process considers the needs and expectations of all stakeholders. The system for which this process is shown is the Automated Telemetry Health Monitoring System (ATHMoS) developed at the German Space Operations Center of the German Aerospace Center. In its early phase as a research software, it paved the way for the novelty detection research. After its value for the satellite engineer’s daily work became visible, it evolved to a robust and resilient software tool that can be used in a productive environment to support the engineers in their routine work. Furthermore, the integration of the system into our Visualization and Data Analysis framework is explained. This framework has a web-based front-end for the interactive exploration and analysis of satellite telemetry data

    A Modern Approach to Visualise Structured and Unstructured Space Missions' Data

    Get PDF
    In this paper the Visualisation and Data Analysis (ViDA) project, currently being developed at the German Space Operations Center (GSOC), is presented. ViDA is a modern, interactive, web-based frontend tool designed to efficiently explore various types of data generated by space missions. It is more than just a telemetry display tool and, as such, includes features from business intelligence, data science and AI tools, while being focused on the multi-spacecraft operations use case. The paper describes how the big data challenges (volume, variety, variability, complexity, value) in the context of spacecraft operations have been addressed and how the adopted solutions have been integrated into ViDA. It also highlights the importance of contextual knowledge as crucial point for the design and implementation of ViDA. The techniques used for creating appropriate visual representations of the data and their relations are described. Such visualisations are specifically designed to deliver interpretable results to the users, thus helping them to quickly extract knowledge from them during their analytical process. Finally, the integration of ViDA into the ground system and its connections to the other tools in the telemetry/telecommand chain are discussed

    Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array

    Full text link
    Aims. We investigate the cosmological evolution of large- and small-scale magnetic fields in galaxies in the light of present models of formation and evolution of galaxies. Methods. We use the dynamo theory to derive the timescales of amplification and ordering of magnetic fields in disk and puffy galaxies. Turbulence in protogalactic halos generated by thermal virialization can drive an efficient turbulent dynamo. Results from simulations of hierarchical structure formation cosmology provide a tool to develop an evolutionary model of regular magnetic fields coupled with galaxy formation and evolution. Results. The turbulent (small-scale) dynamo was able to amplify a weak seed magnetic field in halos of protogalaxies to a few muG strength within a few 10^8 yr. This turbulent field served as a seed to the mean-field (large-scale) dynamo. Galaxies similar to the Milky Way formed their disks at z~10 and regular fields of muG strength and a few kpc coherence length were generated within 2 Gyr (at z~3), but field-ordering on the coherence scale of the galaxy size required an additional 6 Gyr (at z~0.5). Giant galaxies formed their disks at z~10, allowing more efficient dynamo generation of strong regular fields (with kpc coherence length) already at z~4. However, the age of the Universe is short for fully coherent fields in giant galaxies larger than 15 kpc to have been achieved. Dwarf galaxies should have hosted fully coherent fields at z~1. After a major merger, the strength of the turbulent field is enhanced by a factor of a few. Conclusions. This evolutionary scenario can be tested by measurements of polarized synchrotron emission and Faraday rotation with the planned SKA. We predict an anticorrelation between galaxy size and ratio between ordering scale and galaxy size (abridged).Comment: 13 pages, 3 figures, accepted for publication to A&A; new version which incorporates suggestions of a language edito

    Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder:The ENIGMA adventure

    Get PDF
    International audienc

    Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples

    Get PDF
    Objective: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. Methods: Cortical thickness and surface area (based on the Desikan–Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). Results: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen’s d=−0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. Conclusions: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    Acute mountain sickness.

    Get PDF
    Acute mountain sickness (AMS) is a clinical syndrome occurring in otherwise healthy normal individuals who ascend rapidly to high altitude. Symptoms develop over a period ofa few hours or days. The usual symptoms include headache, anorexia, nausea, vomiting, lethargy, unsteadiness of gait, undue dyspnoea on moderate exertion and interrupted sleep. AMS is unrelated to physical fitness, sex or age except that young children over two years of age are unduly susceptible. One of the striking features ofAMS is the wide variation in individual susceptibility which is to some extent consistent. Some subjects never experience symptoms at any altitude while others have repeated attacks on ascending to quite modest altitudes. Rapid ascent to altitudes of 2500 to 3000m will produce symptoms in some subjects while after ascent over 23 days to 5000m most subjects will be affected, some to a marked degree. In general, the more rapid the ascent, the higher the altitude reached and the greater the physical exertion involved, the more severe AMS will be. Ifthe subjects stay at the altitude reached there is a tendency for acclimatization to occur and symptoms to remit over 1-7 days
    corecore