68 research outputs found

    Mineralogy and geochemistry of the Masa Valverde blind massive sulphide deposit, Iberian Pyrite Belt (Spain)

    Get PDF
    Masa Valverde is a blind, volcanic-hosted massive sulphide deposit recently discovered in the Spanish sector of the Iberian Pyrite Belt (IPB). The deposit is more than 1 km long and is located at depths between 400 and 850 m, in direct spatial association with a residual gravimetric anomaly. The ore body is concealed beneath Culm sedimentary rocks which cover the westem extension of a Hercynian age anticline, a few kilometers west of an area where older massive sulphide workings existed. The Masa Valverde deposit consists of two main ore bodies composed dominantly of massive and banded pyrite which are hosted by a volcano-sedimentary sequence made up of felsic tuffs interlayered with shale, siliceous exhalite and radiolarian chert. The abundance of sedimentary host rocks to the deposit is a feature shared by other large massive sulphide deposits in the eastem sector of the IPB and is interpreted as significant with respect to the origin of the deposit (a break in volcanic activity). The thickness of the upper massive sulphide orebody varies between a few meters and 70 m, and it consists of lenses and blankets of massive sulphides with interbedded tuff and shale and occasionally stockwork zones. The lower orebody is smaller and thinner than the upper one, but this may be due to incomplete drilling. Two types of stockwork occur beneath the massive sulphide bodies, the more common type consists of irregular and anastomosing sulphide veinlets and irregular blebs formed by replacement. Stockwork with cross-cutting, generally straight-sided, sulphide veins is, by contrast, suggestive of formation by hydraulic fracturing. The mineralogy and alteration processes of the ore and host rocks at Masa Valverde are analogous to those of other IPB massive sulphides

    Dilution versus pollution in watercourses affected by acid mine drainage: a graphic model for the Iberian Pyrite Belt (SW Spain)

    Get PDF
    The aim of this study was to chemically characterize the water quality impacts of the 88 acid mine drainage (AMD) generating mines in the Spanish sector of the Iberian Pyrite Belt (IPB). This was necessary because the Water Framework Directive of the European Union and the hydrological plans of the Tinto, Odiel, and Piedras river basins require that water quality be improved enough to allow at least some of the rivers in the IPB to sustain healthy fish populations by 2027. The results indicate a clear decrease in metals, arsenic, and sulfate concentrations and increased pH between the AMD-sources and the river channels.info:eu-repo/semantics/publishedVersio

    Sources, background and enrichment of lead and other elements: Lower Guadiana River

    Get PDF
    The lower sector of the Guadiana River Basin, located in southern Portugal and Spain, hosts soils and plants with elevated Pb, Cu and As near former and current mining sites. Two geogenic and two anthropogenic sources of Pb were identified where elevated concentrations are mostly related to the occurrence of sulphide-rich ore deposits, Volcanic Sedimentary formations and mining. These were generally reflected by the multiple regression analysis (MRA) and confirmed by isotope determinations. Nevertheless, caution was needed in interpreting statistical and isotopic results; therefore the combination of both techniques was important. Elements, such as Ca, Na, Cu and As, show enrichment in soil developed on shale, sandstone and conglomerate of Upper Devonian age belonging to the Phyllite-Quartzite Group. Lead exhibits an enrichment in soil developed on felsic volcanic rocks from the Volcanic Sedimentary Complex (VSC) of Upper Devonian-Lower Carboniferous age, which has been identified by the relationship between topsoil median values of different lithologies and grand subsoil median values. In the same soil, Fe, As, Co, Ni and Cr are depleted. Translocation of Pb to the aerial parts of plants is insignificant in all three plant species studied and analysed (Cistus ladanifer L., Thymus vulgaris, Lavandula luisieri). High Pb concentrations in soil, where Cistus ladanifer L. developed, the only representative number of species analysed, do not correspond generally to elevated Pb contents in plants, except near mine sites, where lower pH of soil, increases Pb bioavailability. The different statistical methodologies combined with Pb isotopic studies were successfully applied in the identification of Pb sources in soil and Cistus ladanifer L. plant of the Lower sector of Guadiana River basin. Therefore, rocks, mineralisations, subsoil, topsoil and plant processes were successfully integrated to understand the migration of Pb into the food chai

    Late orogenic carboniferous extensions in the Variscan French Massif Central

    No full text
    International audienceThe Variscan French Massif Central experienced two successive stages of extension from Middle Carboniferous to Early Permian. In the northern Massif Central, the first stage began in the late Visean, immediately after nappe stacking, and is well recorded by Namurian-Westphalian synkinematic plutonism. The Middle Carboniferous leucogranites widespread in the NW Massif Central (Limousin and Sioule area) were emplaced within a crust extending along a NE-SW direction. At the same time, the hanging wall or "Guéret extensional allochton" moved toward the SE. Several examples of the synextensional plutonism are also recognized in central Limousin: Saint Mathieu dome, La Porcherie, and Cornil leucogranites. These examples illustrate the relationship between granite emplacement and crustal scale deformation characterized by NW-SE stretching and NE-SW shortening. In the central and southern Massif Central (Cévennes, Châtaigneraie, and Margeride areas), plutonism is dominantly granodioritic and exhibits the same structural features: NW-SE maximum stretching and overturning to the SE. Middle Carboniferous (Namurian-Westphalian) extension was parallel to the Variscan belt both in the Massif Central and southern Armorican area. This extensional regime was active from the late Visean in the north, while compression dominated in the southernmost domains (Montagne Noire and Pyrenées). The second extensional stage occurred from Late Carboniferous to Early Permian. This event was responsible for the opening of intramontane coal basins, brittle deformation in the upper crust, and ductile normal faulting localized on the margin of cordierite granite-migmatite domes. Data from the coal basins show that the half-graben is the dominant structural style, except for basins located along submeridianal left-lateral faults which have pull-apart geometries. Late Carboniferous extension occurred along the NE-SW direction. The NE-SW maximum stretching direction can be found in the whole Massif Central but is more developed in the eastern part. The extensional direction is transverse to the general trend of the belt, and top-to-the-NE shearing is dominant. Correlations of these two extension directions with neighboring Variscan massifs are discussed

    Microstructural evolution and trace element mobility in Witwatersrand pyrite

    Get PDF
    Microstructural analysis of pyrite from a single sample of Witwatersrand conglomerate indicates a complex deformation history involving components of both plastic and brittle deformation. Internal deformation associated with dislocation creep is heterogeneously developed within grains, shows no systematic relationship to bulk rock strain or the location of grain boundaries and is interpreted to represent an episode of pyrite deformation that predates the incorporation of detrital pyrite grains into the Central Rand conglomerates. In contrast, brittle deformation, manifest by grain fragmentation that transects dislocation-related microstructures, is spatially related to grain contacts and is interpreted to represent post-depositional deformation of the Central Rand conglomerates. Analysis of the low-angle boundaries associated with the early dislocation creep phase of deformation indicates the operation of {100} slip systems. However, some orientation boundaries have geometrical characteristics that are not consistent with simple {100} deformation.These boundaries may represent the combination of multiple slip systems or the operation of the previously unrecognized {120} slip system. These boundaries are associated with order of magnitude enrichments in As, Ni and Co that indicate a deformation control on the remobilization of trace elements within pyrite and a potential slip system control on the effectiveness of fast-diffusion pathways. The results confirm the importance of grain-scale elemental remobilization within pyrite prior to their incorporation into the Witwatersrand gold-bearing conglomerates. Since the relationship between gold and pyrite is intimately related to the trace element geochemistry of pyrite, the results have implications for the application of minor element geochemistry to ore deposit formation, suggest a reason for heterogeneous conductivity and localized gold precipitation in natural pyrite and provide a framework for improving mineral processing

    Physical property analysis and preserved relative amplitude processed seismic imaging of volcanogenic massive sulfides-a case study from Neves-Corvo, Portugal

    No full text
    Neves–Corvo is one of the biggest mining districts on the Portuguese side of the Iberian Pyrite Belt hosting six different lower Carboniferous copper, zinc, lead and tin orebodies including Lombador, Neves, Graça, Corvo, Zambujal, and Semblana. During the past 50 years, geological, geochemical, and geophysical methods were utilized in the exploration of volcanogenic massive sulfide deposits at Neves–Corvo. Electromagnetic, earth resistivity, and principally gravimetry methods played major roles in the geophysical exploration of the area. However, in 2011, as the exploration depth for volcanogenic massive sulfide mineralization became ever deeper, the surface reflection seismic technique was trialled. Initially, elastic property measurements were employed on numerous core samples to determine the seismic properties of the major formations of Neves–Corvo. The contrast in acoustic impedance values derived from these measurements showed that there should be a significant difference in the seismic response of mineralization relative to the surrounding host rocks. Based on this, a high-resolution 3D seismic survey was acquired over the Neves–Corvo mine and its southeastern extension in order to image known deep volcanogenic massive sulfide mineralization to validate the seismic reflection technique and to potentially identify new mineralization targets. As a result, the Semblana and Lombador deposits were successfully imaged, along with key lithological contacts and geologic structures. Additionally, copper sulfide extensions south of Semblana were discovered. Unfortunately, all of the high-priority targets that were identified from the seismic data were subsequently drilled and many of them found to be non-economic.In order to overcome the non-uniqueness of the original seismic data, full-waveform sonic and pseudo-logs were used to model different interfaces and calibrate the seismic data. These results indicated that preserved relative amplitude processing might be of importance to help reduce the ambiguity in direct detection of volcanogenic massive sulfide based on seismic amplitude anomalies. The customized relative amplitude processing of a sub-dataset over the Semblana deposit was then performed. The newly obtained seismic cube was calibrated with existing drillholes, and a volumetric interpretation was performed by utilizing amplitude-based geobodies. Eventually, superior target zonation and precision for the subsequent deep drilling campaign was achieved with the revised interpretation, clearly showing that the high priority targets originally identified from the legacy data would not have passed the targeting criteria in the reprocessed data due to their relatively weak amplitude response. The results obtained from this study inspired the subsequent reprocessing of the full seismic dataset
    corecore