61 research outputs found

    Inhibition of polyploidization in Pten-deficient livers reduces steatosis

    Get PDF
    The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers

    Inhibition of polyploidization in Pten-deficient livers reduces steatosis

    Get PDF
    The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers.</p

    Maternal deaths in Pakistan : intersection of gender, class and social exclusion.

    Get PDF
    Background: A key aim of countries with high maternal mortality rates is to increase availability of competent maternal health care during pregnancy and childbirth. Yet, despite significant investment, countries with the highest burdens have not reduced their rates to the expected levels. We argue, taking Pakistan as a case study, that improving physical availability of services is necessary but not sufficient for reducing maternal mortality because gender inequities interact with caste and poverty to socially exclude certain groups of women from health services that are otherwise physically available. Methods: Using a critical ethnographic approach, two case studies of women who died during childbirth were pieced together from information gathered during the first six months of fieldwork in a village in Northern Punjab, Pakistan. Findings: Shida did not receive the necessary medical care because her heavily indebted family could not afford it. Zainab, a victim of domestic violence, did not receive any medical care because her martial family could not afford it, nor did they think she deserved it. Both women belonged to lower caste households, which are materially poor households and socially constructed as inferior. Conclusions: The stories of Shida and Zainab illustrate how a rigidly structured caste hierarchy, the gendered devaluing of females, and the reinforced lack of control that many impoverished women experience conspire to keep women from lifesaving health services that are physically available and should be at their disposal

    Gene expression profiling of early intervertebral disc degeneration reveals a down-regulation of canonical Wnt signaling and caveolin-1 expression: implications for development of regenerative strategies

    Get PDF
    INTRODUCTION: Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration. METHODS: Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age. RESULTS: Early IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells. CONCLUSIONS: Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration

    Sex-specific aspects of phospholamban cardiomyopathy:The importance and prognostic value of low-voltage electrocardiograms

    Get PDF
    Background: A pathogenic variant in the gene encoding phospholamban (PLN), a protein that regulates calcium homeostasis of cardiomyocytes, causes PLN cardiomyopathy. It is characterized by a high arrhythmic burden and can progress to severe cardiomyopathy. Risk assessment guides implantable cardioverter-defibrillator therapy and benefits from personalization. Whether sex-specific differences in PLN cardiomyopathy exist is unknown. Objective: The purpose of this study was to improve the accuracy of PLN cardiomyopathy diagnosis and risk assessment by investigating sex-specific aspects. Methods: We analyzed a multicenter cohort of 933 patients (412 male, 521 female) with the PLN p.(Arg14del) pathogenic variant following up on a recently developed PLN risk model. Sex-specific differences in the incidence of risk model components were investigated: low-voltage electrocardiogram (ECG), premature ventricular contractions, negative T waves, and left ventricular ejection fraction. Results: Sustained ventricular arrhythmias (VAs) occurred in 77 males (18.7%) and 61 females (11.7%) (P =.004). Of the 933 cohort members, 287 (31%) had ≥1 low-voltage ECG during follow-up (180 females [63%], 107 males [37%]; P =.006). Female sex, age, age at clinical presentation, and proband status predicted low-voltage ECG during follow-up (area under the curve: 0.78). Sustained VA-free survival was lowest in males with low-voltage ECG (P <.001). Conclusion: Low-voltage ECGs predict sustained VA and are a component of the PLN risk model. Low-voltage ECGs are more common in females, yet prognostic value is greater in males. Future studies should determine the impact of this difference on the risk prediction of PLN cardiomyopathy and possibly other cardiomyopathies

    The effect of the urban exposome on COVID-19 health outcomes: A systematic review and meta-analysis

    Get PDF
    BACKGROUND: The global severity of SARS-CoV-2 illness has been associated with various urban characteristics, including exposure to ambient air pollutants. This systematic review and meta-analysis aims to synthesize findings from ecological and non-ecological studies to investigate the impact of multiple urban-related features on a variety of COVID-19 health outcomes. METHODS: On December 5, 2022, PubMed was searched to identify all types of observational studies that examined one or more urban exposome characteristics in relation to various COVID-19 health outcomes such as infection severity, the need for hospitalization, ICU admission, COVID pneumonia, and mortality. RESULTS: A total of 38 non-ecological and 241 ecological studies were included in this review. Non-ecological studies highlighted the significant effects of population density, urbanization, and exposure to ambient air pollutants, particularly PM 2.5. The meta-analyses revealed that a 1 μg/m 3 increase in PM 2.5 was associated with a higher likelihood of COVID-19 hospitalization (pooled OR 1.08 (95% CI:1.02-1.14)) and death (pooled OR 1.06 (95% CI:1.03-1.09)). Ecological studies, in addition to confirming the findings of non-ecological studies, also indicated that higher exposure to nitrogen dioxide (NO 2), ozone (O 3), sulphur dioxide (SO 2), and carbon monoxide (CO), as well as lower ambient temperature, humidity, ultraviolet (UV) radiation, and less green and blue space exposure, were associated with increased COVID-19 morbidity and mortality. CONCLUSION: This systematic review has identified several key vulnerability features related to urban areas in the context of the recent COVID-19 pandemic. The findings underscore the importance of improving policies related to urban exposures and implementing measures to protect individuals from these harmful environmental stressors

    Organic electrode coatings for next-generation neural interfaces

    Get PDF
    Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes

    Issues in the construction of wealth indices for the measurement of socio-economic position in low-income countries

    Get PDF
    BACKGROUND: Epidemiological studies often require measures of socio-economic position (SEP). The application of principal components analysis (PCA) to data on asset-ownership is one popular approach to household SEP measurement. Proponents suggest that the approach provides a rational method for weighting asset data in a single indicator, captures the most important aspect of SEP for health studies, and is based on data that are readily available and/or simple to collect. However, the use of PCA on asset data may not be the best approach to SEP measurement. There remains concern that this approach can obscure the meaning of the final index and is statistically inappropriate for use with discrete data. In addition, the choice of assets to include and the level of agreement between wealth indices and more conventional measures of SEP such as consumption expenditure remain unclear. We discuss these issues, illustrating our examples with data from the Malawi Integrated Household Survey 2004-5. METHODS: Wealth indices were constructed using the assets on which data are collected within Demographic and Health Surveys. Indices were constructed using five weighting methods: PCA, PCA using dichotomised versions of categorical variables, equal weights, weights equal to the inverse of the proportion of households owning the item, and Multiple Correspondence Analysis. Agreement between indices was assessed. Indices were compared with per capita consumption expenditure, and the difference in agreement assessed when different methods were used to adjust consumption expenditure for household size and composition. RESULTS: All indices demonstrated similarly modest agreement with consumption expenditure. The indices constructed using dichotomised data showed strong agreement with each other, as did the indices constructed using categorical data. Agreement was lower between indices using data coded in different ways. The level of agreement between wealth indices and consumption expenditure did not differ when different consumption equivalence scales were applied. CONCLUSION: This study questions the appropriateness of wealth indices as proxies for consumption expenditure. The choice of data included had a greater influence on the wealth index than the method used to weight the data. Despite the limitations of PCA, alternative methods also all had disadvantages

    Inhibition of polyploidization in Pten-deficient livers reduces steatosis

    Get PDF
    The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers
    corecore