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Gene expression profiling of early intervertebral
disc degeneration reveals a down-regulation of
canonical Wnt signaling and caveolin-1
expression: implications for development of
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Abstract

Introduction: Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from
notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was
to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic
and chondrodystrophic dogs, a species with naturally occurring IVD degeneration.

Methods: Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich),
2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in
both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the
microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We
hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the
microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD
tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the
NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-
type mice of the same age.

Results: Early IVD degeneration involved significant changes in numerous pathways, including Wnt/b-catenin
signaling. With regard to Wnt/b-catenin signaling, axin2 gene expression was significantly higher in
chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-
regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and
protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of
wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix
with mainly apoptotic, small, rounded cells.

Conclusions: Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1
expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be
regarded an exciting target for developing strategies for IVD regeneration.

* Correspondence: M.A.Tryfonidou@uu.nl
1Department of Clinical Sciences of Companion Animals, Faculty of
Veterinary Medicine, Utrecht University, Yalelaan 108, 3508 TD, Utrecht, The
Netherlands
Full list of author information is available at the end of the article

Smolders et al. Arthritis Research & Therapy 2013, 15:R23
http://arthritis-research.com/content/15/1/R23

© 2012 Smolders et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:M.A.Tryfonidou@uu.nl
http://creativecommons.org/licenses/by/2.0


Introduction
Degeneration of the intervertebral disc (IVD) is a major
cause of low back pain, a major health problem in the
Western world [1]. Low back pain resulting from IVD
degeneration may be treated medically in combination
with physiotherapy. Surgical therapies include decom-
pression with partial discectomy (removal of the dis-
eased IVD tissue), spinal fusion of the affected segment,
or partial or total artificial IVD replacement [2,3].
Although these surgical therapies are generally success-
ful, they are suboptimal since they are not curative and
are associated with various complications: decompres-
sion/partial discectomy results in spinal instability,
spinal fusion can result in adjacent segment degenera-
tion, and IVD replacements/prostheses are associated
with failure of the surgical implants [4-9]. Therefore,
within the field of regenerative medicine the focus has
been on strategies concentrating on biological repair of
the degenerating disc using adult stem or progenitor
cells, growth factors, and/or gene therapy [10]. However,
the biomolecular events involved in IVD degeneration
remain largely unexplored [11-13].
Like humans, dogs suffer from spontaneous IVD degen-

eration that involves similar macroscopic (for example,
dehydration of the NP (nucleus pulposus), decrease in disc
height), histopathological (for example, chondrocyte pro-
liferation, disorganization of the annulus fibrosus), and
biochemical changes (for example, decrease in proteogly-
can content, increase in matrix metalloproteinase (MMP)
activity) [14]. In humans and dogs, the juvenile, healthy
NP of the IVD consists of a dense population of notochor-
dal cells (NCs) embedded in a modest amount of extracel-
lular matrix [15,16]. The NC has restorative capacity upon
other cells, such as chondrocyte-like cells (CLCs) and
mesenchymal stem cells, with significant regenerative
potential, and thus is an interesting focus for regenerative
strategies [13,17-21]. In humans and dogs, aging and early
degeneration of the IVD involves chondroid metaplasia of
the NP, which is characterized by the replacement of NCs
by CLCs [11,16,22]. With regard to this cellular phenom-
enon, the dog is a unique species, because two subspecies
can be distinguished, namely, chondrodystrophic and non-
chondrodystrophic dog breeds [22,23]. Chondrodystrophic
breeds are characterized by a disturbed endochondral ossi-
fication, resulting in disproportionally short limbs relative
to the length of the spine. In these breeds, replacement of
NCs by CLCs occurs before 1 year of age, with a concur-
rent onset of IVD degeneration at all spinal levels [22]. In
contrast, non-chondrodystrophic breeds have normal
growth of the long bones, and in these dogs the NC
remains the predominant cell type of the NP until middle
or old age. In non-chondrodystrophic dogs, IVD degene-
ration generally occurs at older ages compared with

chondrodystrophic dogs (> 4 to 5 years of age), and mainly
at selected locations (caudal cervical and lumbosacral
spine), probably due to a high workload at these spinal
levels [22,24-29].
Therefore, these two dog types reflect a naturally

occurring animal model for IVD degeneration, represent-
ing differential maintenance of the NC with differential
causative factors [14,30]. Hence, the dog can be consid-
ered a unique model for studying the (patho)physiology
of the NC and associated early IVD degeneration.
Although the process of early IVD degeneration has been

described histopathologically [14,16,22], biomolecular sig-
naling pathways involved in the transition from the NP
rich in NCs to the NP rich in CLCs (that is, early IVD
degeneration) require further investigation. The aim of this
study was to investigate the biomolecular signaling profiles
associated with NC maintenance and replacement of NCs
by CLCs in non-chondrodystrophic and chondrodystrophic
dogs, to identify possible targets for IVD regeneration. In
the present study, apart from expected biomolecular signal-
ing pathways involved in early IVD degeneration, including
Wnt/b-catenin signaling, new pathways were identified. In
particular, Caveolin-1, a regulator of Wnt/b-catenin signal-
ing, was found to be a crucial factor in the maintenance of
NC health and physiology, and in the initiation of IVD
degeneration, being significantly different between the two
canine subspecies. These results indicate that Caveolin-1 is
an exciting target for further studies.

Materials and methods
Ethics statement
All materials used in this study were collected from ani-
mals euthanized in other, unrelated experiments
approved by the Ethics Committee on Animal Experi-
mentation (DEC) of Utrecht University. Canine IVD tis-
sue was collected from dogs euthanized in studies
investigating osteoarthritis (Experiment numbers DEC
2007.III.08.110 and DEC 2009.III.05.037; euthanasia per-
formed by way of an intravenous overdose of pentobarbi-
tal) [31-33] and cardiovascular disease (Experiment
number DEC 2007.II.01.029; euthanasia performed under
general anesthesia by way of fibrillation and subsequent
excision of the heart) [[34], other, unpublished data].
Murine IVD tissue was collected from mice euthanized

for studies investigating the role of Caveolin-1 in liver
regeneration (Experiment number DEC 2008.III.01.001;
euthanasia performed by way of exsanguination under
isoflurane anesthesia; work not yet published). In these
unrelated experiments, the animals were sacrificed for
the collection of tissue other than IVD. All experimental
procedures were performed strictly according the guide-
lines set by the Ethics Committee of Utrecht University.
The Ethics Committee of Utrecht University approved
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post-mortem harvesting of the IVD tissue employed in
the present study.

Sample collection
Cervical (vertebrae C2 to T1) and thoracolumbar (verteb-
rae T10 to S1) spines were collected from five mongrel
dogs (non-chondrodystrophic group, age range 13 to 60
months, body weight range 26.6 to 32.1 kg) and six Beagle
dogs (chondrodystrophic group, age range 25 to 36
months, weight range, 13.6 to 16.0 kg). Spines were
resected en bloc and cut into single functional spinal units
(FSUs; endplate-IVD-endplate). Each FSU was cut in the
sagittal plane into two equal parts. The NP was collected
from one part, snap frozen in liquid nitrogen, and stored
at -70°C. The other part was fixed in 4% neutral buffered
formaldehyde, decalcified in 10% ethylenediaminetetraace-
tic acid (EDTA) for 3 months at room temperature, and
embedded in paraffin.

Histopathological grading of IVD samples
To optimally investigate mRNA expression patterns asso-
ciated with NC maintenance and replacement of NCs by
CLCs, histopathological grading was performed as
described previously [35]. Mid-sagittal sections (4 μm)
were mounted on Microscope KP+ slides (Klinipath B.V,
Duiven, the Netherlands) and stained with H&E. Compo-
site raw images of each IVD were made using a Colorview
IIIU digital camera (Olympus, Zeist, the Netherlands)
mounted to a BX-40 microscope (Olympus, Zeist, the
Netherlands). The images were scaled and the following
parameters were measured for the NP: 1) proportion (%) of
NP surface area and pericellular matrix consisting of NCs,

which were identified based on morphologic characteristics
(cell size, intracytoplasmic vesicles, typical NC clusters)
[16,36], and 2) proportion of NP surface area consisting of
CLCs and fibrocartilaginous matrix. By combining these
parameters for each IVD sample, samples were assigned by
a board-certified veterinary pathologist to one of three
groups, namely, 1) a notochordal cell-rich (NC-rich) group
(> 90% of NP surface area consisting of NCs), 2) a mixed
group (cell population consisting of both NCs and CLCs,
with 10% to 90% of NP surface area consisting of NCs),
and a CLC-rich group (> 90% of NP surface area consisting
of CLCs and corresponding matrix) (Figure 1).
To further assess the cellular phenomenon involving the

transition from NC-rich to CLC-rich NP, and thus the
applied histopathological grading, the gene expression of
the notochordal markers Brachyury [12,37] and Cytokera-
tin 8 [38,39] was investigated in all groups (qPCR analysis,
see below).

DNA microarray analysis
Four NPs from the three histopathological groups for
each breed type were randomly selected and used to iso-
late total RNA, using the RNeasy Fibrous Tissue Mini
Kit (Qiagen, Venlo, the Netherlands) according to the
manufacturer’s instructions. After on-column DNase-I
treatment (Qiagen RNAse-free DNase kit, Venlo, the
Netherlands), RNA was quantified spectrophotometri-
cally using Nanodrop ND-1000 (Isogen Life Science, De
Meern, the Netherlands) and RNA integrity was deter-
mined using a Bioanalyzer 2100 (Agilent Technologies,
Amstelveen, the Netherlands). RNA integrity numbers
of the samples varied from 4.5 to 7.4 (mean ± SD 6.2 ±

Figure 1 Typical macroscopic pictures and corresponding H&E sections of the applied classification. The notochordal cell (NC)-rich
nucleus pulposus (NP) (A) contains NCs with a viable morphology organized in clusters; the mixed group (B) contains both NCs and
chondrocyte-like cells (CLCs); and the CLC-rich group (C) contains solely CLCs embedded in a dense matrix.
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0.7), indicating that these samples could be used to per-
form valid gene expression analysis [40].
A two-color DNA microarray with a reference experi-

ment design was performed on 44 k Canine Gene Expres-
sion Microarrays V1 (G2519F, Agilent Technologies,
Amstelveen, the Netherlands) [41]. Double round RNA
amplification and labeling were performed as described
before [42] on an automated system (Caliper Life Sciences,
‘s-Hertogenbosch, the Netherlands) with 10 to 50 ng total
RNA input from each sample. The common RNA refer-
ence pool consisted of a multitude of canine organs,
including liver, spleen, kidney, lung, heart, intestine, and
bone. Hybridizations were performed on an HS4800PRO
system with QuadChambers (Tecan Benelux B.V.B.A.,
Giessen, the Netherlands), using 300 to 500 ng labeled
cRNA per channel as described previously [43]. From each
group two samples were labeled with Cy5 and hybridized
against the common reference cRNA (Cy3) on dual chan-
nel arrays, and two samples were hybridized in dye swap.
Hybridized slides were scanned on an Agilent scanner
(G2565BA) at 100% laser power, 100% photomultiplier
tube (PMT). After automated data extraction using Ima-
gene 8.0 (BioDiscovery, El Segundo, CA, United States of
America), print-tip loess normalization was performed
[44] on mean spot intensities. Dye bias was corrected
based on a within-set estimate [45]. Patterns of gene
expression were compared between the three stages of
IVD degeneration (NC-rich, mixed, CLC-rich NP) within
each breed type and between the two breed types. Data
were analyzed using microarray analysis of variance
(MAANOVA) [46]. In a fixed-effect analysis, sample,
array, and dye effects were modeled. P-values were deter-
mined with a permutation F2-test, in which residuals were
shuffled 5,000 times globally. Genes with a P-value < 0.05
after Benjamini-Hochberg determination of false discovery
rate (FDR) were considered significantly changed; a change
cutoff value of 1.3-fold was applied.
Differentially expressed genes were converted to their

human homologues, and the following array compari-
sons were included in functional pathway analysis
using the GeneGo MetaCore platform [47]: 1) NC-rich
group vs. mixed group, mixed group vs. CLC-rich
group, and NC-rich group vs. CLC-rich group in both
chondrodystrophic and non-chondrodystrophic dogs;
2) non-chondrodystrophic vs. chondrodystrophic
breeds: NC-rich group, mixed group, and CLC-rich
group. Pathways showing significant changes in gene
expression were selected and analyzed further as
described below.

Quantitative PCR (qPCR)
Six NPs from the three histopathological groups for
each breed type were analyzed (cDNA samples used for
microarray and additional, similarly processed samples).

Unlabeled microarray cDNA from the first round of
amplification was used. For the additional samples,
cRNA was synthesized by extracting RNA as described
for the microarray, followed by one round of amplifica-
tion using in vitro transcription [48], assuring similar
pre-PCR treatment of both cRNA sources.
For all samples, cDNA was synthesized using the

iScript™ cDNA Synthesis Kit (Biorad, Veenendaal, the
Netherlands). qPCR was performed using a MyIQ thermal
cycler, IQ SYBRGreen SuperMix (BioRad, Veenendaal, the
Netherlands) and dog-specific primers (Eurogentec, Maas-
tricht, the Netherlands) (see Additional file 1). Each sam-
ple was treated as an individual sample, and samples from
different histopathological grades and subspecies were
analyzed separately (in tehnical duplicates). Primers were
designed for the notochordal marker genes Brachyury and
Cytokeratin 8, and based on the microarray analyses pri-
mers were designed for the following Wnt target genes:
Wnt3a, Wnt7b, Wnt inhibitory factor 1 (Wif1), Frizzled 1
(Fzd1), Low density lipoprotein receptor-related protein 5
(Lrp5), Dickkopf homolog 3 (Dkk3), Integrin-linked kinase
(Ilk), Caveolin-1 (Cav1) and Axin2 [49-57]. Conditions for
the qPCR experiments were carefully validated as
described previously [35]. The amplification efficiency was
between 90% and 110%. Relative expression was calculated
by the efficiency-corrected delta-delta Ct (ΔΔCt) method
[58] using a set of five reference genes (see Additional file
1).
Using the ΔΔCt as a parameter value, linear mixed

models [59,60] were designed to statistically analyze the
obtained data for each individual target gene. P-values
were calculated to analyze differences in relative gene
expression between groups (chondrodystrophic and
non-chondrodystrophic dogs) and degeneration stages
(NC-rich, mixed, CLC-rich). The Benjamini-Hochberg
correction was used to correct for multiple comparisons
[61]. P < 0.05 was considered statistically significant. For
a complete description of the statistical analyses, see
Additional file 2.

b-Catenin protein expression
To validate differences in Wnt/b-catenin signaling
between non-chondrodystrophic and chondrodystrophic
dogs, immunohistochemistry of b-catenin was performed
as described before [35], and analyzed focussing on differ-
ences between non-chondrodystrophic and chondrody-
strophic dogs. Integrated density for b-catenin staining of
the NP was corrected for the surface area of the NP, posi-
tively stained for b-catenin, in order to correct for the dif-
ference in disc size between the two breed groups.
Furthermore, total protein was extracted from lumbar
CLC-rich NPs from non-chondrodystrophic and chondro-
dystrophic dogs using radioimmunoprecipitation assay
(RIPA) buffer; protein concentration was determined with
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a Lowry assay. Aliquots of protein were subjected to 10%
SDS-PAGE (15 μg/lane). Protein (5 μg) from a human
insulinoma CM cell line [62] served as positive control.
The proteins were electroblotted onto a Hybond-C nitro-
cellulose membrane (Amersham Biosciences, RPN203C,
Bath, United Kingdom). After blocking with 4% non-fat
dry milk in Tris-buffered saline containing 0.1% Tween20
(TBST0.1), the membrane was incubated overnight at 4°C
with b-catenin antibody (Ab6302, Abcam, Cambridge,
United Kingdom, 1:500 in 4% BSA in TBST0.1). After
three 5-minute washes in TBST0.1, the membrane was
incubated for 90 minutes with anti-rabbit horseradish per-
oxidase (HRP)-conjugated secondary antibody (R&D, Min-
neapolis, MN, United States of America; HAF008, 1:20.000
in TBST0.1). Protein expression was detected using an
enhanced chemiluminescence substrate (ECL Advance,
Amersham RPN2135, Bath, United Kingdom) in a Chemi-
Doc XRS System (Bio-Rad Laboratories, Veenendaal, the
Netherlands). Control experiments were included by omit-
ting the primary antibodies. After completing the western
blot for b-catenin, the membranes were washed in
TBST0.1 and re-used to determine a-tubulin protein
expression. For this purpose, all steps as described above
were performed except for the antibody incubations: the
membrane was incubated with primary antibody for
a-tubulin (Sigma T6199, 1:750, Zwijndrecht, the Nether-
lands) for 2 hours at room temperature, followed by sec-
ondary anti-mouse HRP-conjugated antibody (R&D
HAF007,1:20000, Minneapolis, MN, United States of
America). All experiments were performed in triplicate.

Caveolin-1 immunohistochemistry
Paraffin-embedded IVD (as described above) sections from
five non-chondrodystrophic and five chondrodystrophic
dogs for each group (NC-rich, mixed, CLC-rich; n = 10 per
group) were subjected to antigen retrieval in 10 mM citrate
buffer (pH 6.0), followed by blocking of endogenous perox-
idase activity [35]. Nonspecific background staining was
minimized by pre-incubation with blocking buffer contain-
ing 10% normal goat serum (Sigma-Aldrich, Zwijndrecht,
the Netherlands)/0.1% Tween-20 (Tween-20, Boom BV,
Meppel, the Netherlands) in PBS for 30 minutes, and an
overnight incubation at 4°C with the primary antibody
monoclonal mouse anti-Caveolin-1 (Transduction Labora-
tories, Breda, the Netherlands mAb2297, 2.5 μg/ml, 1:100
in PBS with 0.1% Tween-20). After sections were washed
in PBS buffer/0.025% Triton X, Caveolin-1 was visualized
with the goat anti-mouse Envision System and the liquid
diaminobenzidine (DAB) chromogen system (Dako, Hever-
lee, Belgium) and counterstained with hematoxylin (Hema-
toxylin QS, Vector Laboratories Inc., Peterborough, United
Kingdom). In negative control sections, the primary
antibody was omitted or replaced with its respective
serum. All sections were stained in the same session.

Detailed overview images of each stained slide were
made using a Colorview IIIU digital camera (Olympus,
Zeist, the Netherlands) mounted to a BX-40 microscope
(Olympus, Zeist, the Netherlands). The total NP surface of
each sample was measured by defining the perimeter of
the NP, excluding the transition zone. A custom-made
color range selection optimized for Caveolin-1 specific
staining was used to calculate the proportion of the NP
surface area that stained for Caveolin-1, and the mean
gray value (staining intensity) for Caveolin-1 staining in
each sample, as described previously [35].
For each parameter, linear mixed models were used to

calculate P-values to analyze differences between groups
(chondrodystrophic and non-chondrodystrophic) and
degeneration stages (NC-rich, mixed, CLC-rich) (for a
complete description of the statistical analyses: Addi-
tional file 2). The Benjamini-Hochberg correction was
used to correct for multiple comparisons [61]. P < 0.05
was considered statistically significant.
To investigate the relationship between Caveolin-1 and

canonical Wnt signaling in the NP, their colocalization
was investigated by way of simultaneous immunofluores-
cence analysis of both proteins. Paraffin-embedded IVD
slides were used for immunofluorescent labeling of
Caveolin-1 as described above, except that the slides
were incubated overnight with a combination of primary
antibodies monoclonal mouse anti-Caveolin-1 (Trans-
duction Laboratories, Breda, the Netherlands, mAb2297,
2.5 μg/ml, 1:100 in PBS with 0.1% Tween-20) and poly-
clonal rabbit anti-b-catenin (Abcam, Cambridge, United
Kingdom, ab6302, 1:50 in PBS with 0.1% Tween-20). The
secondary antibodies used were 1:100 goat anti-mouse
antibody conjugated to Alexa488 (2.5 μg/ml; Invitrogen,
Breda, the Netherlands) and 1:100 goat anti-rabbit anti-
body conjugated to Alexa568 (2.5 μg/ml; Invitrogen,
Breda, the Netherlands). Topro-3 iodide (2 μg/ml; Invi-
trogen, Breda, the Netherlands, T3605) was used to stain
the nucleus.
To outline the proximity of the fluorescently-marked

Caveolin-1 and b-catenin proteins, profile intensity plots
were generated in LAS-AF imaging software (Leica
microsystems, Wetzlar, Germany). Straight lines were
drawn across representative cell bodies and intensity
profiles were extracted from the channels visualizing
and measuring the fluorescence of Caveolin-1, b-catenin,
and Topro-3. The data were subsequently exported to
Microsoft Excel (Microsoft Corporation, Amsterdam,
the Netherlands) and plotted.

Caveolin-1 expression in NCs in vitro
On the basis of the previous analyses, Caveolin-1 was inves-
tigated in NCs in vitro. NCs were isolated from the NPs of
cervical (C2 to T1) and lumbar (L1 to S1) IVDs from six,
young-adult, mongrel dogs (non-chondrodystrophic, aged
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16 to 18 months, and weighing 16 to 24 kg). The NCs were
cultured in their original cluster-like conformation as
described previously [35] on coverslips in 6-well plates
(Falcon Multiwell Primaria, Becton Dickinson, Breda, the
Netherlands) in penicillin/streptomycin (P/S)-FCS, 10%)-
DMEM-F12 under normoxic conditions (5% CO2) at 37°C
for 10 days.
For RNA isolation, non-adherent cells at days 0 and 2

(NCs first adhered on day 4) were collected by centrifu-
ging the medium at 1500 RPM at 4°C for 1 minute; on
days 4, 6, 8, and 10, the medium was removed, the wells
were washed with RNase-free Hank’s solution, and the
adherent cells were lysed and used for analysis. For all
time points, total cellular RNA was isolated using the
RNeasy Mini Kit (Qiagen, Venlo, the Netherlands)
according to the manufacturer’s instructions. The relative
gene expression of Caveolin-1 was analyzed as described
above.
Non-adhered cells on days 0 and 2 were collected

from the culture medium and mounted on positively
charged slides (Klinipath, Duiven, the Netherlands)
using a Shandon Cytospin 4 (Therma Scientific, Land-
smeer, the Netherlands). Cells were fixed on days 0, 2,
4, 6, 8, and 10, and were used for immunofluorescent
labeling of Caveolin-1 as described above, except that
the secondary antibody used was 1:100 donkey anti-
mouse antibody conjugated to Alexa488, (2.5 μg/ml;
Invitrogen, Breda, the Netherlands). Topro-3 iodide
(2 μg/ml; Invitrogen, Breda, the Netherlands, T3605)
was used to stain the nucleus. The cells were mounted
with Fluorsave (Calbiochem, Darmstadt, Germany).
Images at 5 random locations in each sample were
acquired by a sequential recording procedure on a mul-
tiphoton imaging station (MP2100, Zeiss, Herfordshire,
United Kingdom). Immunofluorescent images of the
cells were analyzed with CellProfiler 2.0 software pack-
age (Massachusetts Institute of Technology, Massachu-
setts, United States of America), with cell nuclei
detected on the Topro-3 images (nuclear staining) and
the Caveolin-1 expression signal on the Caveolin-1
images. For each image, the total number of cells and the
total Caveolin-1 signal were measured, and the estimated
mean intensity of Caveolin-1 protein staining per cell was
calculated by dividing the total Caveolin-1 signal, after
subtraction of background, by the total number of cells.
For both ΔCT for Caveolin-1 gene expression, and

Caveolin-1 protein expression per cell, linear mixed mod-
els were designed to calculate P-values to analyze differ-
ences in the Caveolin-1 gene and protein expression
between time points in culture. The Benjamini-Hochberg
correction was used to correct for multiple comparisons
[61]. P < 0.05 was considered statistically significant (see
Additional file 2 for a complete description of the statisti-
cal analyses).

NP in Caveolin-1 knock-out (KO) mice
To further assess the role of Caveolin-1 in NC preserva-
tion and early IVD degeneration, spines were collected
from 3-month-old Caveolin-1 KO-mice (Cavtm1Mls , JAX®,
the Jackson Laboratory, Maine, United States of America)
and wild-type mice (strain B6129SF2, JAX®). Spines were
fixed in 4% neutral buffered formalin, decalcified (7 days
in EDTA at 4°C), and embedded in paraffin. Mid-sagittal
sections (4 μm) were mounted on Microscope KP+ slides
(Klinipath B.V., Duiven, the Netherlands) and stained with
H&E and alcian blue/picosirius red, the latter highlighting
proteoglycan (blue) and collagen content (red) [63]. Multi-
ple sections of the NP of multiple cervical and lumbar
IVDs (n = 4) from each mouse were histopathologically
evaluated.

Results
Microarray: changes in gene expression
In NPs from non-chondrodystrophic dogs, the NC-rich,
mixed, and CLC-rich groups consisted of 100.0% NCs,
45.4% to 87.0% NCs, and 100.0% CLCs, respectively; in
NPs from chondrodystrophic dogs, these proportions were
93.9% to 100.0% NCs, 39.7% to 89.9% NCs, and 100.0%
CLCs, respectively. Therefore, the applied histopathologi-
cal classification resulted in the NC-rich, mixed, and CLC-
rich groups being comparable between chondrodystrophic
and non-chondrodystrophic dogs, allowing reliable investi-
gation of early IVD degeneration within both types of
breed, and comparison between the two types of breed.
qPCR analysis revealed no significant differences in the

expression of the notochordal markers Brachyury and
Cytokeratin 8 in the different histopathological stages in
non-chondrodystrophic dogs, indicating that the expres-
sion of NC marker genes was preserved in all histopatholo-
gical stages despite significant changes in IVD morphology
(Figure 2 and Additional file 3). However, in chondrody-
strophic dogs, Brachyury and Cytokeratin 8 gene expres-
sion was significantly downregulated in the CLC-rich
group compared with the NC-rich and mixed groups;
Brachyury and Cytokeratin 8 gene expression was signifi-
cantly lower in CLC-rich NP from chondrodystrophic dogs
than in CLC-rich NP from non-chondrodystrophic dogs.
These results suggest that in chondrodystrophic dogs the
transition from NC-rich to CLC-rich NP involves a signifi-
cant downregulation in NC marker gene expression. These
results were sustained by the microarray results, showing
decreased gene expression in the CLC-rich group com-
pared with the NC-rich group of notochordal markers
Cytokeratin 8 and 19 [38,64,65].
Numerous up- and downregulated genes were found in

the microarrays (Table 1 and Additional file 4; the micro-
array data discussed in this manuscript have been depos-
ited in NCBI’s Gene Expression Omnibus (GEO) [66]
[GEO: GSE35717] [67]. Metacore pathway map analysis
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showed that several signaling pathways were up- or down-
regulated in the transition from NC-rich to CLC-rich NP
from chondrodystrophic dogs, such as extracellular matrix
remodeling, plasmin signaling, plasminogen activator-uro-
kinase (PLAU)-signaling, bone morphogenetic protein sig-
naling, and Wnt signaling/cytoskeletal remodeling (see
Additional file 5).
Metacore pathway map analysis could not be performed

on the gene regulation results from non-chondrodystrophic
dogs, because relatively too few genes were down- or
upregulated in this breed group (see Additional file 4).

Wnt/b-catenin signaling was analyzed further because it
is involved in both the regeneration and the degeneration
of various tissues [68]. The expression of the Wnt7b (Wnt
ligand), Wif1 (inhibits by binding to Wnt ligands), Ilk
(inhibits glycogen synthase kinase 3-b), and Lrp5 (Wnt
co-receptor) genes was significantly changed and these
Wnt/b-catenin target genes were analyzed further by
qPCR, as were additional targets involved in canonical
Wnt signaling: Wnt3a (Wnt ligand), Fzd1 (Wnt receptor),
Dkk3 (negative regulator of Wnt), and Axin2 (Wnt read-
out) (see Additional file 3).

Figure 2 Relative gene expression of relevant target genes. Relative gene expression of Brachyury, Cytokeratin 8, Axin2, Frizzled 1 (Fzd1), Low
density lipoprotein receptor-related protein 5 (Lrp5), Wnt7b, Wnt inhibitory factor 1 (Wif1), Integrin linked kinase (Ilk), and Dickkopf homolog 3 (Dkk3)
in the notochordal cell-rich (NC-rich), mixed, and chondrocyte-like cell rich (CLC-rich) NP from non-chondrodystrophic (NCD) and
chondrodystrophic (CD) dogs (NCD, NC-rich NP was used as reference, set at 1). *Significant difference between NC-rich, mixed, and CLC-rich NP;
§significant difference between NCD and CD dogs.
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Table 1 Top 25 up- and downregulated genes for the microarray comparison of notochordal cell (NC)-rich nucleus pulposus (NP) (reference) vs. chondrocyte-
like cell-(CLC)-rich NP in chondrodystrophic dogs

Chondrodystrophic dogs: NC-rich NP vs. CLC-rich NP

Total upregulated genes: 1.178 Total downregulated genes: 1,741

Description GO term: biological Process N-fold change P-value

Carboxypeptidase E Protein modification process 8.65 8.65E-05

Transferrin Transferrin transport 8.58 1.56E-02

Ceruloplasmin (ferroxidase) Cellular iron ion homeostasis 7.34 2.02E-03

Frizzled-related protein Negative regulation of canonical Wnt receptor signaling pathway 7.26 4.24E-03

Decorin Peptide cross-linking via chondroitin 4-sulfate glycosaminoglycan 7.11 2.00E-02

Cartilage oligomeric matrix protein Anti-apoptosis 7.08 6.69E-05

Serglycin Negative regulation of bone mineralization 6.97 9.64E-03

Lumican Collagen fibril organization 6.88 1.39E-02

Not annotated Not annotated 6.66 1.15E-02

Metallothionein 2A Cellular response to erythropoietin 6.60 5.33E-03

RAN binding protein 3-like Intracellular transport 6.54 4.71E-02

Retinol binding protein 4, plasma Protein complex assembly 6.40 6.79E-04

Cysteine dioxygenase, type I Response to glucagon stimulus 6.30 1.36E-02

Adenylate cyclase 2 Activation of adenylate cyclase activity by G-protein signaling pathway 5.97 3.94E-04

Tetraspanin 13 Not available 5.88 1.95E-02

Microfibrillar associated protein 5 Not available 5.75 1.17E-04

Proteoglycan 4 Cell proliferation 5.61 3.00E-03

S100 calcium binding protein A12 Inflammatory response 5.59 1.15E-02

Phosphotyrosine interaction domain containing 1 Not available 5.57 8.41E-05

Nephronectin Cell differentiation 5.54 2.76E-04

Lysozyme Cell wall macromolecule catabolic process 5.47 2.42E-02

SPARC-like 1 (hevin) Signal transduction 5.34 2.85E-02

Glycoprotein 25L Not available 5.27 5.84E-04

Serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 Regulation of proteolysis 5.08 6.92E-04

Sphingomyelin phosphodiesterase, acid-like 3A Sphingomyelin catabolic process 5.01 1.16E-02

Keratin 18 Golgi to plasma membrane CFTR protein transport -12.93 1.44E-03

tRNA-yW synthesizing protein 3 homolog tRNA processing -7.83 9.45E-04

A kinase (PRKA) anchor protein 12 Signal transduction -7.69 7.56E-03

Phospholipase C-like 1 Lipid metabolic process -7.40 9.48E-03

Desmocollin 3 Cell adhesion -7.05 1.40E-03

Myosin, light chain 9, regulatory Regulation of muscle contraction -6.84 1.64E-02

Mitochondrial ribosomal protein S27 Not available -6.76 4.96E-04

Ectonucleotide pyrophosphatase/phosphodiesterase 2 Regulation of cell migration -6.41 9.38E-03

Keratin 19 Cell differentiation involved in embryonic placenta development -6.32 6.00E-03

Plakophilin 2 Carbohydrate metabolic process -6.13 6.02E-04
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Table 1 Top 25 up- and downregulated genes for the microarray comparison of notochordal cell (NC)-rich nucleus pulposus (NP) (reference) vs. chondrocyte-
like cell-(CLC)-rich NP in chondrodystrophic dogs (Continued)

Tetraspanin 7 Interspecies interaction between organisms -6.01 3.00E-03

Keratin 8 Cytoskeleton organization -5.94 2.60E-02

Nucleosome assembly protein 1-like 1 DNA replication -5.92 1.40E-03

RAB20, member RAS oncogene family Small GTPase mediated signal transduction -5.79 2.91E-03

Caldesmon 1 Positive regulation of protein binding -5.68 3.60E-03

Potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3 Synaptic transmission -5.64 4.46E-03

Apelin Positive regulation of phosphorylation -5.59 7.66E-03

Sorbin and SH3 domain containing 2 Biological process -5.42 3.39E-03

Phosphatidylcholine transfer protein Cholesterol metabolic process -5.37 1.30E-03

Kv channel interacting protein 1 Synaptic transmission -5.14 < 1.0E-06

Carbonic anhydrase II Carbon utilization -5.07 2.57E-02

Thy-1 cell surface antigen Cytoskeleton organization -4.74 1.10E-02

RAB38, member RAS oncogene family GTP catabolic process -4.71 5.79E-04

Sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3C Neural tube development -4.58 1.01E-04

Desmocollin 2 Cell adhesion -4.48 9.91E-03

This specific comparison was chosen to illustrate the overall trend in gene regulations observed in early IVD degeneration. For the top 50 up- and downregulations of all performed microarray analyses, see
Additional file 4. For brevity, only one Gene Ontology (GO)-term is given for each gene (obtained with bioDBnet [97]).
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Quantitative PCR of the canonical Wnt signaling pathway
and b-catenin protein expression
The relative gene expression of axin2, which is a highly
reliable read-out for the activity of Wnt/b-catenin sig-
naling [69-71], was significantly lower in the CLC-rich
group than in the NC-rich and mixed groups in both
non-chondrodystrophic and chondrodystrophic dogs
(Figure 2). In chondrodystrophic dogs, this decrease in
Axin2 gene expression may be related to the gene
expression of Wif1 (inhibits Wnt ligands), which was
significantly upregulated in the CLC-rich group com-
pared with the NC-rich and mixed groups. In non-chon-
drodystrophic dogs, no significant changes in Wif1 gene
expression were found. However, gene expression of the
Wnt ligand Wnt7b, which activates canonical Wnt sig-
naling through interactions with Fzd and LRP5 [72], was
significantly higher in the CLC-rich group compared
with the mixed group in both non-chondrodystrophic
and chondrodystrophic dogs.
Compared with non-chondrodystrophic dogs, Axin2

gene expression was significantly higher in chondrody-
strophic dogs in all histopathological groups, indicating
an overall higher Wnt signaling activity in chondrody-
strophic dogs. Accordingly, the integrated density of b-
catenin corrected for the NP surface area positively
stained, was significantly higher in the CLC-rich NP of
chondrodystrophic dogs compared with non-chondrody-
strophic dogs (see Figure S1A and B in Additional file 6,
and Additional file 7). Due to the abudance of matrix
protein in the native CLC-rich NP tissue, western blot
analysis of active b-catenin expression was cumbersome
and quantification of the data was not reliable. However,
the chondrodystrophic CLC-rich NP appeared to have
less degraded b-catenin compared to non-chondroy-
strophic dogs (see Figure S1C in Additional file 6, and
Additional file 7). These findings are sustained by inves-
tigation of the gene expression of the Wnt receptor
Fzd1, which was significantly higher in chondrody-
strophic dogs than in non-chondrodystrophic dogs for
all three histopathological stages. Gene expression of
Wnt7b was significantly higher in non-chondrody-
strophic dogs compared with chondrodystrophic dogs in
all histopathological stages.
The relative gene expression of Lrp5, Ilk, and Dkk3

remained unchanged in both non-chondrodystrophic and
chondrodystrophic dogs. Gene expression of the Wnt3a
was undetectable in all groups in both breed types.

Caveolin-1 expression
The microarray analyses showed significant changes in
Caveolin-1, -2 and -3. Early IVD degeneration involved
significant downregulation of Caveolin-1 and -2, and sig-
nificant upregulation of Caveolin-3 (see Additional files 3
and 4). Given the role of Caveolin-1 in the regulation of

canonical Wnt signaling [55,56,73] and the reported
upregulation of Caveolin-1 in degenerated human IVDs
[74], its gene and protein expression were further investi-
gated by way of qPCR and immunohistochemistry.
In chondrodystrophic dogs, the gene expression of

Caveolin-1 was significantly downregulated in the
CLC-rich compared with the NC-rich and mixed
groups (Figure 3); no significant changes were found in
non-chondrodystrophic dogs. The gene expression of
Caveolin-1 in the CLC-rich NP was significantly lower in
chondrodystrophic dogs than in non-chondrodystrophic
dogs.
Caveolin-1 protein was predominantly located in the

cell membranes of NCs, and occasionally in their cyto-
plasm; Caveolin-1 protein was seldom observed in CLCs.
The proportion of the NP surface area that stained for
Caveolin-1 was significantly lower in the CLC-rich NP
than in the NC-rich and mixed NP in both non-chondro-
dystrophic and chondrodystrophic dogs, indicating
decreased Caveolin-1 protein expression (see Additional
file 8). No significant differences were found in the mean
gray value (staining intensity) between the NC-rich,
mixed, and CLC-rich groups in both non-chondrody-
strophic and chondrodystrophic dogs. The intensity of
Caveolin-1 staining in all three histopathological groups
was significantly higher in non-chondrodystrophic than
in chondrodystrophic dogs.
To further assess the relationship between Caveolin-1

and canonical Wnt signaling in the NP, co-immunofluor-
escence of Caveolin-1 and b-catenin was performed. Pro-
file intensity plots (Figure 3) showed clear signal peaks of
b-catenin expression within the cell nucleus of NCs, indi-
cative of active canonical Wnt signaling. Also, clear pro-
tein expression of Caveolin-1 and b-catenin was
colocalized at the cell membrane of NCs, which is sup-
portive of interaction of these proteins within the NC-
rich NP. In CLCs, Caveolin-1 and b-catenin protein
expression was rarely observed, which is indicative of less
active canonical Wnt signaling and no colocalization and
potential protein interaction.

To verify the possible role of Caveolin-1 in NCs, its
expression and intracellular distribution in primary NCs
was investigated
The relative gene expression of Caveolin-1 in primary
NCs on day 0 in culture was comparable to that in NC-
rich NP tissue ex vivo, but thereafter increased signifi-
cantly on days 2, 4, and 6 and remained stable on days
8 and 10 (see Additional files 7, 9 and 10). Caveolin-1
protein was located in intracellular membranes, as sug-
gested by the inhomogeneous appearance of the immu-
nolabeled membrane-embedded marker, and in the NC
cell membrane (Figure 4). The expression of Caveolin-1
protein per cell was significantly higher on day 4 in
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Figure 3 Caveolin-1 expression in the course of early intervertebral disc degeneration. (A) Caveolin-1 gene expression and (B) proportion
of the NP surface area that stained for Caveolin-1, and mean gray value for Caveolin-1 protein expression in the notochordal cell (NC)-rich,
mixed, and chondrocyte-like cell (CLC)-rich nucleus pulposus (NP) from non-chondrodystrophic (NCD) and chondrodystrophic (CD) dogs.
*Significant difference between degeneration stages; §significant difference between NCD and CD dogs. The proportion of the NP surface area
that stained for caveolin-1 was not divided into NCD and CD dogs because no significant differences were found between breed types. (C)
Typical examples of NP samples stained for Caveolin-1, showing the NC-rich NP, mixed cell population NP with NCs and CLCs, and the CLC-rich
NP. In the NC-rich and mixed groups, membranous (arrow) and cytoplasmic (arrowhead) staining can be observed. Note that Caveolin-1 staining
is not observed in CLCs. (D) Immunofluorescent staining of the NC-rich NP for the proteins Caveolin-1 (green) and b-catenin (red), and for DNA
(blue). Region of interest (ROI) lines drawn across cell bodies were used to generate profile intensity plots (right) for the signal intensity of the
Caveolin-1 (green), b-catenin (red), and Topro-3 (blue). The signal intensity peaks for Caveolin-1 correspond with the signal peaks of b-catenin at
the cell membrane (located at the same distance of the ROI line), indicating colocalization of these proteins. Also, the central b-catenin signal
peaks correspond with the Topro-3 signal peaks, indicating nuclear localization of b-catenin.
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culture than on days 0 and 2, but levels decreased there-
after on days 6, 8 and 10.

The physiological role Caveolin-1 in the preservation of
NCs was further investigated in Caveolin-1 KO mice
The IVD of 3-month-old Caveolin-1 KO mice was sig-
nificantly different from that of wild-type mice of the
same age (Figure 5). The NP of the wild-type IVD con-
sisted of a centrally located area of large cells with
highly vacuolated cytoplasm and hyperchromatic nuclei,
consistent with the morphological characteristics of
viable NCs. A limited amount of chondroid-like intercel-
lular matrix was visible within the area of NCs and there
was a large rim of this matrix in the zone between the
NCs and the endplate. In contrast, the NP of the Caveo-
lin-1 KO mice contained rounded cells, with a smaller
amount of cytoplasm lacking the typical vacuolar
appearance. Over 75% of these cells did not contain
recognizable nuclei and were characterized by cytoplas-
mic eosinophilia suggestive of necrosis or apoptosis. The
NP of Caveolin-1 KO mice contained a large amount of
chondroid-like intercellular matrix between the cells
within the NP.

Discussion
Gene expression profiling of chondroid metaplasia of
the NP, which is seen in physiological aging as well in
early (subclinical) degeneration of the IVD, revealed
novel genes and pathways involved in the preservation
of the NC in the healthy IVD. The results obtained indi-
cate that IVD degeneration in dogs involved significant
downregulation of Wnt/b-catenin signaling and Caveo-
lin-1; the latter seems to be crucial for NC maintenance
and an important factor in IVD degeneration.
Material was obtained from non-chondrodystrophic

and chondrodystrophic dogs, a unique animal model in
view of investigating the NC and degeneration/regenera-
tion of the IVD: in non-chondrodystrophic dogs, the
NC remains the predominant cell type of the NP during
the majority of life, with IVD degeneration only occur-
ring at old age and in selected IVDs; conversely, in

chondrodystrophic dogs the NC is lost early in life, with
concurrent degeneration of all IVDs. Therefore, these
two dog types reflect a naturally occurring animal
model representing differential maintenance of the NC
and associated differences in maintenance of optimal
matrix health of the IVD [14,30].
In the present study the main focus was the transition

of a healthy NC-rich NP into an aging/degenerating
CLC-rich NP. However, recent studies have indicated
that both the healthy and degenerating NP, apart from
NCs and CLCs, contain stem/progenitor cells (approxi-
mately 1% of the NP cell population) [75-77]. These NP
progenitor cells express so-called stemness genes, and
have been shown to functionally differentiate into the
adipogenic, chondrogenic, and neurogenic lineage [75].
As these progenitor cells are present within the NP, it is
very well possible that these cells had a profound effect
upon the signaling of NCs and CLCs and on the studied
biomolecular signaling events, particularly with respect
to the different phenotypes of the non-chondrody-
strophic and chondrodystrophic NP investigated. Addi-
tional studies are warranted on this specific matter.
The relative expression of the notochordal markers

Brachyury and Cytokeratin 8 [12,37-39] revealed marked
differences between chondrodystrophic and non-chon-
drodystrophic dogs. In the initial stages of early IVD
degeneration (classified as the mixed group), Brachyury
and Cytokeratin 8 gene expression remained constant,
indicating the preservation of the NC phenotype in the
NP at this stage in both chondrodystrophic and non-
chondrodystrophic dogs. However, Brachyury and Cyto-
keratin 8 gene expression was significantly decreased in
the CLC-rich NP from chondrodystrophic, but not non-
chondrodystrophic dogs. Decreased expression of NC
markers is also seen in degenerated human IVDs [78]
and is indicative of a significant loss of NCs from the
NP [12,37-39]. The maintenance of high levels of Bra-
chyury and Cytokeratin 8 gene expression in the non-
chondrodystrophic, CLC-rich NP indicates that the NP
cells in non-chondrodystrophic dogs undergo significant
morphological changes, but can preserve characteristics

Figure 4 Immunofluorescence of Caveolin-1 in primary notochordal cells in monolayer culture. Immunofluorescence images of the
notochordal cell clusters on days 0, 2, 4, 6, 8, and 10 in culture. Scale bar: 50 μm. Nuclear staining (Topro-3) and Caveolin-1 staining are
depicted in blue and green, respectively. Caveolin-1 protein was located in intracellular membranes, as suggested by the inhomogeneous
appearance of the immunolabeled membrane-embedded marker, and in the notochordal cell membrane.

Smolders et al. Arthritis Research & Therapy 2013, 15:R23
http://arthritis-research.com/content/15/1/R23

Page 12 of 19



of NCs on the basis of their gene expression pattern.
These findings are consistent with the observation that
there are niches of NCs in degenerated, human CLC-rich
NP [11,12,38,78]. Therefore, based on histopathological

assessment and the expression of notochordal marker
genes, and in accordance with previous studies
[17,19,79,80], loss of the notochordal phenotype would
appear to be associated with the accelerated IVD

Figure 5 The intervertebral disc phenotype of Caveolin-1 knock-out mice. Typical examples of the intervertebral discs from 3-month-old
wild-type (A and C) and Caveolin-1 knock-out (B and D) mice, stained with H&E (A and B) and alcian blue/pricrosirius red (C and D). The
pictures on the right are magnifications of the corresponding pictures on the left. The wild-type nucleus pulposus (NP) consisted of centrally
located, viable notochordal cells (arrowhead) and a relatively limited amount of chondroid-like intercellular matrix (*), which stains blue in the
sections stained with alcian blue/picrosirius red. The NP of the Caveolin-1 KO mice contained apoptotic (arrowheads) and rounded cells, with a
smaller amount of cytoplasm lacking the typical vacuolar aspect (arrows), and a relatively large amount of chondroid-like intercellular matrix (*).
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degeneration seen in chondrodystrophic dogs, whereas in
non-chondrodystrophic dogs the NCs or CLCs retain
notochordal characteristics, accounting for the relatively
low prevalence of IVD degeneration observed in this
breed type [22,81].

Canonical Wnt signaling activity is decreased in early IVD
degeneration, with a clear differences between non-
chondrodystrophic and chondrodystrophic dogs
An increase in canonical Wnt signaling activity results in
increased gene expression of Axin2, which is considered a
reliable read-out for the activity of canonical Wnt signal-
ing [69-71]. Axin2 gene expression was significantly down-
regulated in the CLC-rich NP compared with the NC-rich
and mixed NP in both non-chondrodystrophic and chon-
drodystrophic dogs, indicating that early (subclinical) IVD
degeneration involves a significant reduction in canonical
Wnt signaling activity. These results seem contradictory to
our previous findings [35], showing that the CLC-rich NP
had a higher Axin2 gene expression than the NC-rich NP.
However, in that particular study CLC-NP tissue from
chondrodystrophic dogs was compared with NC-rich NP
tissue from non-chondrodystrophic dogs. Indeed, chon-
drodystrophic NPs exhibit significantly higher levels of
Axin2 gene expression than non-chondrodystrophic dogs
in all histopathological groups investigated in this study
(Figure 2), which explains the apparently contradictory
results between the previous report [35] and the present
one. The significantly higher Axin2 gene expression found
in chondrodystrophic dogs was further sustained by the
significantly higher signal intensity for b-catenin-protein
expression within the CLC-rich NP tissue as shown by
immunohistochemistry, and most probably less degraded
b-catenin as shown by the western blot analysis (see
Additional files 6 and 7).
The gene expression of Wnt7b, which activates canoni-

cal Wnt signaling through interacting with the Wnt recep-
tors LRP5 and Fzd1 [72], was increased during NP
chondrification and was consistently higher in all histo-
pathological groups in non-chondrodystrophic dogs than
in chondrodystrophic dogs. Increased Wnt7b gene expres-
sion has also been reported in the cartilage of patients
with osteoarthritis (OA) and rheumatoid arthritis (RA)
[82]. In that respect, the significantly higher gene expres-
sion of Wnt7b may reflect a response to increase canonical
Wnt signaling activity and an attempt to preserve NP
health. Interestingly, canonical Wnt signaling activity
(Axin2 and Fzd1 expression) was markedly higher in
chondrodystrophic dogs in all histopathological stages, as
was also reported earlier in canine NP cells [35]. In chon-
drodystrophic dogs, the decrease in Wnt signaling activity
during NP chondrification may be explained by the
increased expression of Wif1 and Frizzled-related protein
(Frzb) (Wnt inhibitors, Figure 2 see alos Additional file 3),

and the reduced expression of r-spondin-3 (rspo3; Wnt
activator, see Additional file 3). It is tempting to hypothe-
size about the potential role of Wnt signaling in the transi-
tion from the healthy, NC-rich NP to the aged or
degenerated CLC-rich NP. As Wnt signaling regulates
notochord fate and stem cell renewal and apoptosis
[83,84], decreased Wnt signaling may result in increased
apoptosis and decreased self-renewal of NCs or NP stem
cells, and ultimately in chondroid metaplasia of the NP.
The higher canonical Wnt signaling seen in chondrody-
strophic dogs may reflect an ineffective attempt to pre-
serve the notochordal phenotype of NP cells or to regulate
stem cell renewal and apoptosis. Conversely, given the
involvement of Wnt signaling in tissue degeneration
[85,86], higher Wnt signaling in chondrodystrophic dogs
might reflect a diminished capacity to limit Wnt signaling,
resulting in accelerated extracellular matrix breakdown, as
is observed in patients with OA or RA [82,85]. This line of
thought may also be in accordance with recent findings
showing increased b-catenin protein expression in degen-
erated human IVD tissue as compared with healthy con-
trols [87]. Altogether, these data illustrate the dual role of
Wnt signaling, which requires further elucidation with
respect to the transition from the NC-rich to the CLC-
rich NP, also with respect to the role played by progenitor
cells within the NP in various stages of degeneration
[75-77].

Loss of NC phenotype involves significant
downregulation of Caveolin-1 expression
Caveolin-1 is required for notochord development [88],
and caveolins regulate canonical Wnt signaling by
recruiting b-catenin to caveolae membranes, thereby
inhibiting Wnt/b-catenin signaling and reinforcing cell-
cell adhesion mechanisms [55], and by internalizing
LRP6 (Wnt receptor), thereby activating canonical Wnt
signaling [56]. Furthermore, Caveolin-1 stimulates cano-
nical Wnt signaling by activating integrin-linked kinase
which inhibits glycogen synthase kinase 3-b, a key
enzyme in Wnt/b-catenin signaling that phosphorylates
b-catenin leading to the subsequent degradation of this
molecule [73]. Also, Caveolin-1 stimulates canonical
Wnt signaling through the accumulation of b-catenin to
caveolae membranes, thereby preventing degradation of
b-catenin by glycogen synthase kinase 3-b [55]. The per-
formed co-immunofluorescence analysis of Caveolin-1
and b-catenin (the effector protein of canonical Wnt
signaling) showed protein expression peaks of both pro-
teins localized at the cell membrane, which may indicate
an interaction between these proteins within the NC.
However, in CLCs no such protein expression/colocali-
zation was observed. It is tempting to hypothesize that
within the NC, caveolae function to regulate b-catenin
signaling by preventing its degradation and to reinforce
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cell-cell clusters, which is a morphological characteristic
of NCs [36]. In line with the decrease in canonical Wnt
signaling in early IVD degeneration, Caveolin-1 gene
expression was significantly downregulated in both
breed types. Caveolin-1 protein expression was observed
almost exclusively in NCs and decreased significantly
with chondrification/degeneration of the NP (Figure 3).
However, other authors have reported increased Caveo-
lin-1 expression to be associated with senescence of NP
cells [74,89] and chondrocytes, with subsequent IVD
degeneration and OA [90], respectively. This discre-
pancy is probably because the other studies investigated
advanced stages of degeneration involving CLCs only,
whereas we investigated early degeneration, involving
the transition from the NC-rich to CLC-rich NP. Apart
from cell senescence, Caveolin is known to play a signif-
icant role in various cellular processes, including stem
cell regulation and proliferation [91]. Therefore, Caveo-
lin-1 may act differently according to the triggering sig-
nals and cellular context, such as the stage of IVD
degeneration and in different cell types [92]. The rela-
tionship between Wnt/b-catenin signaling and Caveolin-
1 in the NP in different stages of degeneration and in
NCs compared with CLCs requires further investigation.
Interestingly, the expression of Caveolin-1 protein was
consistently lower in chondrodystrophic NP than in
non-chondrodystrophic NP regardless of histopathologi-
cal stage, indicating a direct relationship between the
absence of Caveolin-1 and the accelerated loss of NCs
from the NP in chondrodystrophic dogs.

Caveolin-1 appears to fulfill essential functions in the NC
cytoskeleton
In an attempt to understand the role of caveolin-1 in
NC physiology, we studied its distribution in NCs in
culture. Caveolin-1 protein was detected in the cell
membrane and in intracellular membranes (Figure 4), as
reported previously [93]. As expected, Caveolin-1 gene
and protein expression increased significantly when the
cells adhered to the culture plate (days 4 and 6). Caveo-
lin interacts with actin filaments of the cytoskeleton [94]
and its increased expression may be involved in the for-
mation of the NC cytoskeleton and adherence of NCs to
the culture plate. In accordance with these observations,
microarray analysis revealed significant changes in cytos-
keletal components, supporting a role for Caveolin-1 in
the NC cytoskeleton. NCs are known to contain a dense
network of intracellular Actin, which may be involved in
the homeostasis of the intracellular vesicles and cluster
formation of these cells [36]. An important function of
Caveolin-1 may be to regulate the interaction of caveo-
lae with the actin cytoskeleton, thereby controling
whether caveolae are at the cell surface or traveling to

interior sites, or regulating the homeostasis of intracellu-
lar vesicles and intercellular clusters [95].

Absence of Caveolin-1 coincides with decreased NC
preservation and early IVD degeneration
The essential role of Caveolin-1 in NC physiology was
corroborated by the IVD phenotype of the Caveolin-1
KO mice. Unlike NP from wild-type mice, NP from
Caveolin-1 KO mice showed relatively few healthy NC
clusters; most NP cells lacked the morphological charac-
teristics of NCs and showed signs of apoptosis, and the
NP contained an abundance of intercellular chondroid
matrix, similar to the CLC-rich NP (Figure 5). These
changes are similar to the histopathological changes
observed in the transition from an NC-rich to CLC-rich
NP (Figure 1) [14,22]. Therefore, these findings suggest
that Caveolin-1 is essential for NC maintenance, and that
decreased Caveolin-1 expression is an important factor in
NC physiology and IVD degeneration. To further investi-
gate the role of Caveolin-1 and its relationship with Wnt/
b-catenin, future studies need to focus on Wnt/b-catenin
signaling in Caveolin-1 KO mice.
Apart from the involvement in IVD degeneration,

Caveolin proteins are involved in stem cell regulation
and proliferation, as well as in the pathogenesis of can-
cers, pulmonary hypertension, cardiomyopathy, diabetes,
and muscular dystrophy [91]. There has been an increas-
ing interest in the application of Caveolin-mimetic pep-
tides for the treatment of both cancer and pulmonary
hypertension [91]. The findings of this study suggest that
Caveolin-1 is crucial for NC maintenance and IVD
health, and this protein may be regarded an exciting tar-
get for developing ways to regenerate the IVD. For exam-
ple, the degenerated IVD may be treated by locally
applying Caveolin-1-mimetic peptide or by promoting
the expression of Caveolin-1 in the cells of the degener-
ated IVD, thereby promoting regeneration of the degen-
erated tissue. Also, it should be taken into consideration
that Caveolin-1 may exert different actions dependent on
the cell context and the stage of degeneration [91], and
further in vitro mechanistic studies are required to test
this concept.

Study limitations
In the present study the main focus was to investigate NCs
and CLCs. However, the process of early IVD degeneration
may also involve significant changes in NP progenitor/
stem cells, and these cells may have a significant influence
on the biomolecular signaling events within the NP.
A potential limitation of this study is that relatively

few genes were differentially expressed when comparing
the NC-rich, mixed, and CLC-rich NPs in the non-
chondrodystrophic dogs, whereas in chondrodystrophic
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dogs relatively many genes were up- or downregulated.
This might be because of the genetic heterogeneity of
the non-chondrodystrophic sample (mongrels of differ-
ent age and variable size), whereas the chondrody-
strophic sample consisted of Beagle dogs of the same
age and standardized size. For the chondrodystrophic
breed group (Beagles), an appropriate sample size for
the NC-rich, mixed, and CLC-rich groups could be
obtained using young Beagles (25 to 36 months), as IVD
degeneration occurs relatively early in life. In contrast,
to obtain an appropriate sample size for the non-chon-
drodystrophic group, IVD material was obtained from
young and older dogs, since most IVDs in these non-
chondrodystrophic dogs remain rich in NCs and IVD
degeneration mainly occurs at older age. Therefore,
IVDs graded as mixed and CLC-rich could only be
found in relatively older non-chondrodystrophic dogs,
explaining the relatively large variation in age.
Apart from the distinct IVD phenotype, Caveolin-1

KO mice also exhibit a distinct bone phenotype [96].
Since the endplates are proposed to play a role in the
pathophysiology of IVD degeneration, endplate changes
may also influence IVD and NC physiology.

Conclusions
Early (subclinical) degeneration of the IVD, which is
characterized by changes in the NP cell population,
involves significant changes in the expression of genes
involved in canonical Wnt signaling, ultimately leading to
downregulation of this pathway. The expression of
Caveolin-1, which regulates canonical Wnt signaling, is
decreased in the CLC-rich NP and appears to be essential
to NC physiology and preservation. In view of the high
resemblance between humans and dogs regarding the
biochemistry and molecular biology of IVD degeneration,
it is concluded that Caveolin-1 may play an important
role in IVD aging/degeneration in humans as well.
Caveolin-1 may serve as an interesting target for develop-
ing novel treatment strategies for IVD degeneration.
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