1,273 research outputs found
East Bay Coalition for the Homeless: Branding Study and Marketing Strategy
There are a number of potential positioning strategies. The two which make the most sense for the EBCH are to “position the EBCH away from others in the category” and to “position the EBCH as unique.” These strategies have the advantage of setting the EBCH apart from the other organizations that address homelessness. Occupying its own “position” in the minds of potential and current donors is not only an effective communications/marketing strategy but also a less costly one because it avoids head-to-head competition and comparisons
The UlaG protein family defines novel structural and functional motifs grafted on an ancient RNase fold
Background: Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). A common theme in the evolution of new functions consists of gene duplication followed by functional divergence. UlaG, a unique manganese-dependent metallo-b-lactamase (MBL) enzyme involved in L-ascorbate metabolism by commensal and symbiotic enterobacteria, provides a model for the study of the emergence of new catalytic activities from the modification of an ancient fold. Furthermore, UlaG is the founding member of the so-called UlaG-like (UlaGL) protein family, a recently established and poorly characterized family comprising divalent (and perhaps trivalent)metal-binding MBLs that catalyze transformations on phosphorylated sugars and nucleotides. Results: Here we combined protein structure-guided and sequence-only molecular phylogenetic analyses to dissect the molecular evolution of UlaG and to study its phylogenomic distribution, its relatedness with present-day UlaGL protein sequences and functional conservation. Phylogenetic analyses indicate that UlaGL sequences are present in Bacteria and Archaea, with bona fide orthologs found mainly in mammalian and plant-associated Gramnegative and Gram-positive bacteria. The incongruence between the UlaGL tree and known species trees indicates exchange by HGT and suggests that the UlaGL-encoding genes provided a growth advantage under changing conditions. Our search for more distantly related protein sequences aided by structural homology has uncovered that UlaGL sequences have a common evolutionary origin with present-day RNA processing and metabolizing MBL enzymes widespread in Bacteria, Archaea, and Eukarya. This observation suggests an ancient origin for the UlaGL family within the broader trunk of the MBL superfamily by duplication, neofunctionalization and fixation. Conclusions: Our results suggest that the forerunner of UlaG was present as an RNA metabolizing enzyme in the last common ancestor, and that the modern descendants of that ancestral gene have a wide phylogenetic distribution and functional roles. We propose that the UlaGL family evolved new metabolic roles among bacterial and possibly archeal phyla in the setting of a close association with metazoans, such as in the mammalian gastrointestinal tract or in animal and plant pathogens, as well as in environmental settings. Accordingly, the major evolutionary forces shaping the UlaGL family include vertical inheritance and lineage-specific duplication and acquisition of novel metabolic functions, followed by HGT and numerous lineage-specific gene loss events
Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice
Sleep disturbances are common during aging. Compared to young animals, old mice show altered sleep structure, with changes in both slow and fast electrocorticographic (ECoG) activity and fewer transitions between sleep and wake stages. Insulin-like growth factor I (IGF-I), which is involved in adaptive changes during aging, was previously shown to increase ECoG activity in young mice and monkeys. Furthermore, IGF-I shapes sleep architecture by modulating the activity of mouse orexin neurons in the lateral hypothalamus (LH). We now report that both ECoG activation and excitation of orexin neurons by systemic IGF-I are abrogated in old mice. Moreover, orthodromical responses of LH neurons are facilitated by either systemic or local IGF-I in young mice, but not in old ones. As orexin neurons of old mice show dysregulated IGF-I receptor (IGF-IR) expression, suggesting disturbed IGF-I sensitivity, we treated old mice with AIK3a305, a novel IGF-IR sensitizer, and observed restored responses to IGF-I and rejuvenation of sleep patterns. Thus, disturbed sleep structure in aging mice may be related to impaired IGF-I signaling onto orexin neurons, reflecting a broader loss of IGF-I activity in the aged mouse brain.This work was funded by a grant from Ciberned and is part of the project SAF2016-76462 funded by MCIN/AEI/https://doi.org/10.13039/501100011033. J.A. ZegarraValdivia acknowledges the fnancial support of the National Council of Science, Technology and Technological Innovation (CONCYTEC, Perú) through the National Fund for Scientifc and Technological Development (FONDECYT, Perú). J. Fernandes received a post-doc fellowship from Fundação
de Amparo à Pesquisa do Estado de São Paulo (FAPESP: # 2017/14742–0; # 2019/03368–5)
The Renin Angiotensin System (RAS) mediates bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention
Despite emergence of new systemic therapies, metastatic melanoma remains a challenging and often fatal form of skin cancer. The renin–angiotensin system (RAS) is a major physiological regulatory pathway controlling salt–water equilibrium, intravascular volume and blood pressure. Biological effects of the RAS are mediated by the vasoactive hormone angiotensin II (AngII) via two receptor subtypes, AT1R (encoded by AGTR1) and AT2R (encoded by AGTR2). We report decreasing expression and increasing CpG island methylation of AGTR1 in metastatic versus primary melanoma and detection in serum of methylated genomic DNA from the AGTR1 CpG island in metastatic melanoma implying that AGTR1 encodes a tumour suppressor function in melanoma. Consistent with this hypothesis, antagonism of AT1R using losartan or shRNA-mediated knockdown in melanoma cell lines expressing AGTR1 resulted in acquisition of the ability to proliferate in serum-free conditions. Conversely, ectopic expression of AGTR1 in cell lines lacking endogenous expression inhibits proliferation irrespective of the presence of AngII implying a ligand-independent suppressor function for AT1R. Treatment of melanoma cell lines expressing endogenous AT2R with either AngII or the AT2R-selective agonist Y6AII induces proliferation in serum-free conditions whereas the AT2R-specific antagonists PD123319 and EMA401 inhibit melanoma growth and angiogenesis and potentiate inhibitors of BRAF and MEK in cells with BRAF V600 mutations. Our results demonstrate that the RAS has both oncogenic and tumour suppressor functions in melanoma. Pharmacological inhibition of AT2R may provide therapeutic opportunities in melanomas expressing this receptor and AGTR1 CpG island methylation in serum may serve as a novel biomarker of metastatic melanoma
Adiponectin accounts for gender differences in hepatocellular carcinoma incidence
Hepatocellular carcinoma (HCC) is the sixth most common cancer type and the fourth leading cause of cancer-related death. This cancer appears with higher incidence in men and during obesity; however, the specific mechanisms underlying this correlation are unknown. Adipose tissue, a key organ in metabolic syndrome, shows evident gender disparities in the production of adipokines. Levels of the important adipokine adiponectin decrease in men during puberty, as well as in the obese state. Here, we show that this decrease in adiponectin levels is responsible for the increased liver cancer risk in males. We found that testosterone activates the protein JNK in mouse and human adipocytes. JNK-mediated inhibition of adiponectin secretion increases liver cancer cell proliferation, since adiponectin protects against liver cancer development through the activation of AMP-activated protein kinase (AMPK) and p38α. This study provides insight into adipose tissue to liver crosstalk and its gender relation during cancer development, having the potential to guide strategies for new cancer therapeutics.G. Sabio is an investigator on the Ramón y Cajal Program. E. Manieri is a La Caixa Foundation fellow. L. Herrera-Melle is a fellow of the Ministerio de Educación, Cultura y Deporte (FPU15-05802). This study was funded by the following grants: G. Sabio was funded by the European Research Council (ERC 260464), European Foundation for the Study of Diabetes–Lilly, Ministerio de Ciencia, Innovación y Universidades (MICINN/SAF2016-79126-R), Comunidad de Madrid (B2017/BMD-3733), and BBVA Becas Leonardo a Investigadores y Creadores Culturales (Investigadores-BBVA-2017; IN[17]_BBM_BAS_0066); M. Marcos was funded by Instituto de Salud Carlos III and Federación Española de Enfermedades Raras (PI16/01548); and J.L. Torres was funded by Junta de Castilla y León GRS (1587/A/17). F.J. Cubero is a Ramón y Cajal Researcher (RYC-2014-15242) and a Gilead Liver Research Scholar 2018, and his work is supported by the Ministerio de Economia y Competitividad Retos (SAF2016-78711), Comunidad de Madrid (S2017/BMD-3727), The Alan Morement Memorial Fund Cholangiocarcinoma Charity (2018/117), the European Cooperation in Science and Technology Action (CA17112), and the European Foundation for Alcohol Research (EA14/18). L. Moran is a Comunidad de Madrid fellow (S2017/BMD-3727). The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon
The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
Correction to : The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against α-Synuclein-Induced Toxicity
With the author(s)' decision to opt for Open Choice the copyright of the article changed on March 2018 t
177Lu-Bombesin-PLGA (paclitaxel): A targeted controlled-release nanomedicine for bimodal therapy of breast cancer
The gastrin-releasing peptide receptor (GRPr) is overexpressed in>75% of breast cancers. 177Lu-Bombesin (177Lu-BN) has demonstrated the ability to target GRPr and facilitate efficient delivery of therapeutic radiation doses to malignant cells. Poly(D,L‑lactide‑co‑glycolide) acid (PLGA) nanoparticles can work as smart drug controlled- release systems activated through pH changes. Considering that paclitaxel (PTX) is a first-line drug for cancer treatment, this work aimed to synthesize and chemically characterize a novel polymeric PTX-loaded nanosystem with grafted 177Lu-BN and to evaluate its performance as a targeted controlled-release nanomedicine for concomitant radiotherapy and chemotherapy of breast cancer. PLGA(PTX) nanoparticles were synthesized using the single emulsification-solvent evaporation method with PVA as a stabilizer in the presence of PTX. Thereafter, the activation of PLGA carboxylic groups for BN attachment through the Lys1-amine group was performed. Results of the chemical characterization by FT-IR, DLS, HPLC and SEM/TEM demonstrated the successful synthesis of BN-PLGA(PTX) with a hydrodynamic diameter of 163.54 ± 33.25 nm. The entrapment efficiency of paclitaxel was 92.8 ± 3.6%. The nanosystem showed an adequate controlled release of the anticancer drug, which increased significantly due to the pH change from neutral (pH=7.4) to acidic conditions (pH=5.3). After labeling with 177Lu and purification by ultrafiltration, 177Lu-BN-PLGA(PTX) was obtained with a radiochemical purity of 99 ± 1%. In vitro and in vivo studies using MDA-MB-231 breast cancer cells (GRPr-positive) demonstrated a 177Lu-BNPLGA( PTX) specific uptake and a significantly higher cytotoxic effect for the radiolabeled nanosystem than the unlabeled BN-PLGA(PTX) nanoparticles. Using a pulmonary micrometastasis MDA-MB-231 model, the added value of 177Lu-BN-PLGA(PTX) for tumor imaging was confirmed. The 177Lu-BN-PLGA(PTX) nanomedicine is suitable as a targeted paclitaxel delivery system with concomitant radiotherapeutic effect for the treatment of GRPr-positive breast cancer.This study was partially supported by the National Council of Science and Technology (CONACyT-CB-A1S38087) and the International Atomic Energy Agency (CRP-F22064, Contract 18358). It was carried out as part of the activities of the “Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos, CONACyT
- …
