183 research outputs found

    Vortex structure in p-wave superconductors

    Full text link
    We study vortices in p-wave superconductors in a Ginzburg-Landau setting. The state of the superconductor is described by a pair of complex wave functions, and the p-wave symmetric energy functional couples these in both the kinetic (gradient) and potential energy terms, giving rise to systems of partial differential equations which are nonlinear and coupled in their second derivative terms. We prove the existence of energy minimizing solutions in bounded domains ΩR2\Omega\subset\mathbb R^2, and consider the existence and qualitative properties (such as the asymptotic behavior) of equivariant solutions defined in all of R2\mathbb R^2. The coupling of the equations at highest order changes the nature of the solutions, and many of the usual properties of classical Ginzburg-Landau vortices either do not hold for the p-wave solutions or are not immediately evident

    Reconstructing meteoroid trajectories using forward scatter radio observations from the BRAMS network

    Full text link
    peer reviewedIn this paper, we aim to reconstruct meteoroid trajectories using a forward scatter radio system transmitting a continuous wave (CW) with no modulation. To do so, we use the meteor echoes recorded at the receivers of the BRAMS (Belgian RAdio Meteor Stations) network. This system consists, at the time of writing, of a dedicated transmitter and 44 receiving stations located in and nearby Belgium, all synchronized using GPS clocks. Our approach processes the meteor echoes at the BRAMS receivers and uses the time delays as inputs to a nonlinear optimization solver. We compare the quality of our reconstructions with and without interferometric data to the trajectories given by the optical CAMS (Cameras for Allsky Meteor Surveillance) network in Benelux. We show that the general CW forward scatter trajectory reconstruction problem can be solved, but we highlight its strong ill-conditioning. With interferometry, this high sensitivity to the inputs is alleviated and the reconstructed trajectories are in good agreement with optical ones, displaying an uncertainty smaller than 10% on the velocity and 2° on the inclination for most cases. To increase accuracy, the trajectory reconstruction with time delays only should be complemented by information about the signal phase. The use of at least one interferometer makes the problem much easier to solve and greatly improves the accuracy of the retrieved velocities and inclinations. Increasing the number of receiving stations also enhances the quality of the reconstructions

    Reconstructing meteoroid trajectories using forward scatter radio observations and the interferometer from the BRAMS network

    Full text link
    When meteoroids hit Earth's atmosphere molecules, they leave a trail of plasma behind. This region, composed of free electrons and positively charged ions, is capable of reflecting radio signals. The analysis of such signals along the meteoroid path can be used for various scientific purposes: quantification of the electron line density, analysis of the thermosphere properties, characterization of the meteor ablation process, etc. To achieve these objectives, the meteoroid trajectory needs first to be determined. The reflection on the plasma trails is usually assumed to be specular, which means that the radio wave is reflected only at a given point along the meteoroid trajectory. For forward scatter systems, the position of this specular point depends on the trajectory on the one hand, and on the position of both the emitter and the receiver on the other hand. Using non-collocated receivers, one obtains several specular points along the trajectory. The receivers will thus detect the reflected signal at different time instants on a given trajectory. In this work, we propose a method that aims at reconstructing meteoroid trajectories using only the time differences of the meteor echoes measured at the receivers of a forward scatter radio system, such as the BRAMS (Belgian RAdio Meteor Stations) network. The latter uses the forward scatter of radio waves on ionized meteor trails to study meteoroids falling in the Earth's atmosphere. It is made of a dedicated transmitter and 42 receiving stations located in and nearby Belgium. Given that all the BRAMS receivers are synchronized using GPS clocks, we can compute the time differences of the meteor echoes and use them to find the meteoroid trajectory. Assuming a constant speed motion, the position (three degrees of freedom) and the three velocity components have to be determined. This inverse problem is non-linear and requires the definition of a target objective to minimize. Two different formulations are compared: the first one is based on the minimization of the bistatic range while the second one uses a forward model, which defines the trajectory as being tangential to a family of ellipsoids whose loci are the emitter and each receiver. A Monte-Carlo analysis is performed to highlight the sensitivity of the output trajectory parameters to the input time differences. The BRAMS network also includes an interferometer in Humain (south of Belgium). Unlike the other receiving stations, it uses 5 antennas in the so-called Jones configuration (Jones et al., 1998; Lamy et al., 2018) and allows to determine the direction of arrival of the meteor echo to within approximately 1°. In that case, the problem becomes much easier to solve because the interferometer gives information about the direction of a reflection point. The benefits brought by such a system regarding the accuracy of the trajectory reconstruction are highlighted. The post-processing steps allowing to extract meteor echoes from the raw radio signals are described. An approach to properly filter out the direct beacon signal is introduced. Indeed, each receiver detects a more or less strong direct signal coming from the transmitter. This signal does not contain any information about the meteor path since it simply propagates through the atmosphere and is not reflected on the meteor trail. Knowing that the BRAMS transmitter emits a continuous cosine wave, the amplitude, the frequency and the phase are fitted in the frequency domain. The beacon signal is finally reconstructed in the time domain and subtracted. This process in illustrated in the following figure, which shows an example of spectrograms (i.e. time-frequency maps where the power is color-coded) before and after the beacon signal subtraction. The proper removal of the horizontal line at around 1005 Hz (corresponding to the direct signal) is apparent in the bottom spectrogram. Afterwards, a bandpass filter is necessary to fully exploit the echoes of the detected meteors. Indeed, the raw signal at the time of the meteor echo is noisy and can have interfering signals caused by the reflections on aircrafts. If the latter are at slightly different frequencies than the meteor echo, they produce interference beats. A windowed-sinc filter Blackman filter of high order is therefore used to remove the signal components at frequencies where the meteor echo does not appear. The time corresponding to half-peak power in the rising edge of the echo (which marks the passage of the meteoroid at the specular reflection point) is finally retrieved and the time differences are computed. To analyze the accuracy of the trajectory reconstructions, data from the optical CAMS-BeNeLux network are used. Promising results showing the reconstructed position, velocity and inclination of several meteoroid trajectories with and without the interferometer are discussed. In the following figure, an example of CAMS trajectory reconstruction obtained with our post-processing is shown. The blue line corresponds to the trajectory determined with the CAMS network, while the purple line is obtained through our analysis of the radio signals obtained at the BRAMS receivers. The reconstructed trajectory using the time differences only (method 1) is shown on the left. The trajectory obtained thanks to the combination of time differences and interferometric data (method 2) is given on the right

    Design of InGaAs/InP 1.55μm vertical cavity surface emitting lasers

    No full text
    International audienceThe design of an electrically pumped InGaAs quantum well based vertical cavity surface emitting laser (VCSEL) on InP substrate is presented. Such optically pumped VCSELs have already been demonstrated. To design electrically pumped VCSEL, three simulations steps are needed: optical simulation gives access to the electric field repartition, to design the active zone and the Bragg mirrors. Thermal simulation is helpful to design metallic contacts while the energy band diagram is obtained by electrical simulation to design the buried tunnel junction useful for carrier injection. All these simulations are compared to experiment

    InAs quantum wires on InP substrate for VCSEL applications

    No full text
    International audienceQuantum dash based vertical cavity surface emitting lasers (VCSEL) on InP substrate are presented. Single and close stacking layers were successfully grown with molecular beam epitaxy. Optimized quantum dash layers exhibit a strong polarized 1.55 µm photoluminescence along the [1-10] crystallographic axis. Continuous wave laser emission is demonstrated at room temperature for the first time on a quantum dash VCSEL structure on InP susbtrate. The quantum dash VCSEL laser polarization appears stable on the whole sample and with excitation, no switching is observed. Its polarization is mainly oriented along [1-10], an extinction coefficient of 30 dB is measured. Those preliminary results demonstrate the interests of quantum dashes in the realization of controlled and stable polarization VCSEL device

    The science case for the EISCAT_3D radar

    Get PDF
    The EISCAT (European Incoherent SCATer) Scientific Association has provided versatile incoherent scatter (IS) radar facilities on the mainland of northern Scandinavia (the EISCAT UHF and VHF radar systems) and on Svalbard (the electronically scanning radar ESR (EISCAT Svalbard Radar) for studies of the high-latitude ionised upper atmosphere (the ionosphere). The mainland radars were constructed about 30 years ago, based on technological solutions of that time. The science drivers of today, however, require a more flexible instrument, which allows measurements to be made from the troposphere to the topside ionosphere and gives the measured parameters in three dimensions, not just along a single radar beam. The possibility for continuous operation is also an essential feature. To facilitatefuture science work with a world-leading IS radar facility, planning of a new radar system started first with an EU-funded Design Study (2005–2009) and has continued with a follow-up EU FP7 EISCAT_3D Preparatory Phase project (2010–2014). The radar facility will be realised by using phased arrays, and a key aspect is the use of advanced software and data processing techniques. This type of software radar will act as a pathfinder for other facilities worldwide. The new radar facility will enable the EISCAT_3D science community to address new, significant science questions as well as to serve society, which is increasingly dependent on space-based technology and issues related to space weather. The location of the radar within the auroral oval and at the edge of the stratospheric polar vortex is also ideal for studies of the long-term variability in the atmosphere and global change. This paper is a summary of the EISCAT_3D science case, which was prepared as part of the EU-funded Preparatory Phase project for the new facility. Three science working groups, drawn from the EISCAT user community, participated in preparing this document. In addition to these working group members, who are listed as authors, thanks are due to many others in the EISCAT scientific community for useful contributions, discussions, and support

    Routine molecular profiling of cancer: results of a one-year nationwide program of the French Cooperative Thoracic Intergroup (IFCT) for advanced non-small cell lung cancer (NSCLC) patients.

    Get PDF
    International audienceBackground: The molecular profiling of patients with advanced non-small-cell lung cancer (NSCLC) for known oncogenic drivers is recommended during routine care. Nationally, however, the feasibility and effects on outcomes of this policy are unknown. We aimed to assess the characteristics, molecular profiles, and clinical outcomes of patients who were screened during a 1-year period by a nationwide programme funded by the French National Cancer Institute. Methods This study included patients with advanced NSCLC, who were routinely screened for EGFR mutations, ALK rearrangements, as well as HER2 (ERBB2), KRAS, BRAF, and PIK3CA mutations by 28 certified regional genetics centres in France. Patients were assessed consecutively during a 1-year period from April, 2012, to April, 2013. We measured the frequency of molecular alterations in the six routinely screened genes, the turnaround time in obtaining molecular results, and patients' clinical outcomes. This study is registered with ClinicalTrials.gov, number NCT01700582. Findings 18 679 molecular analyses of 17 664 patients with NSCLC were done (of patients with known data, median age was 64·5 years [range 18–98], 65% were men, 81% were smokers or former smokers, and 76% had adenocarcinoma). The median interval between the initiation of analysis and provision of the written report was 11 days (IQR 7–16). A genetic alteration was recorded in about 50% of the analyses; EGFR mutations were reported in 1947 (11%) of 17 706 analyses for which data were available, HER2 mutations in 98 (1%) of 11 723, KRAS mutations in 4894 (29%) of 17 001, BRAF mutations in 262 (2%) of 13 906, and PIK3CA mutations in 252 (2%) of 10 678; ALK rearrangements were reported in 388 (5%) of 8134 analyses. The median duration of follow-up at the time of analysis was 24·9 months (95% CI 24·8–25·0). The presence of a genetic alteration affected first-line treatment for 4176 (51%) of 8147 patients and was associated with a significant improvement in the proportion of patients achieving an overall response in first-line treatment (37% [95% CI 34·7–38·2] for presence of a genetic alteration vs 33% [29·5–35·6] for absence of a genetic alteration; p=0·03) and in second-line treatment (17% [15·0–18·8] vs 9% [6·7–11·9]; p<0·0001). Presence of a genetic alteration was also associated with improved first-line progression-free survival (10·0 months [95% CI 9·2–10·7] vs 7·1 months [6·1–7·9]; p<0·0001) and overall survival (16·5 months [15·0–18·3] vs 11·8 months [10·1–13·5]; p<0·0001) compared with absence of a genetic alteration. Interpretation Routine nationwide molecular profiling of patients with advanced NSCLC is feasible. The frequency of genetic alterations, acceptable turnaround times in obtaining analysis results, and the clinical advantage provided by detection of a genetic alteration suggest that this policy provides a clinical benefit

    Asteroid (16) Psyche’s primordial shape: A possible Jacobi ellipsoid

    Get PDF
    Context. Asteroid (16) Psyche is the largest M-type asteroid in the main belt and the target of the NASA Psyche mission. It is also the only asteroid of this size (D >  200 km) known to be metal rich. Although various hypotheses have been proposed to explain the rather unique physical properties of this asteroid, a perfect understanding of its formation and bulk composition is still missing. Aims. We aim to refine the shape and bulk density of (16) Psyche and to perform a thorough analysis of its shape to better constrain possible formation scenarios and the structure of its interior. Methods. We obtained disk-resolved VLT/SPHERE/ZIMPOL images acquired within our ESO large program (ID 199.C-0074), which complement similar data obtained in 2018. Both data sets offer a complete coverage of Psyche’s surface. These images were used to reconstruct the three-dimensional (3D) shape of Psyche with two independent shape modeling algorithms (MPCD and ADAM). A shape analysis was subsequently performed, including a comparison with equilibrium figures and the identification of mass deficit regions. Results. Our 3D shape along with existing mass estimates imply a density of 4.20  ±  0.60 g cm−3, which is so far the highest for a solar system object following the four telluric planets. Furthermore, the shape of Psyche presents small deviations from an ellipsoid, that is, prominently three large depressions along its equator. The flatness and density of Psyche are compatible with a formation at hydrostatic equilibrium as a Jacobi ellipsoid with a shorter rotation period of ∼3h. Later impacts may have slowed down Psyche’s rotation, which is currently ∼4.2 h, while also creating the imaged depressions. Conclusions. Our results open the possibility that Psyche acquired its primordial shape either after a giant impact while its interior was already frozen or while its interior was still molten owing to the decay of the short-lived radionuclide 26Al.Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 199.C-0074 (principal investigator: P. Vernazza). P. Vernazza, A. Drouard, M. Ferrais and B. Carry were supported by CNRS/INSU/PNP. J.H. and J.D. were supported by grant 18-09470S of the Czech Science Foundation and by the Charles University Research Programme no. UNCE/SCI/023. E.J. is F.R.S.-FNRS Senior Research Associate. The work of TSR was carried out through grant APOSTD/2019/046 by Generalitat Valenciana (Spain). This work was supported by the MINECO (Spanish Ministry of Economy) through grant RTI2018-095076-B-C21 (MINECO/FEDER, UE)

    Deep-Learning Assessed Muscular Hypodensity Independently Predicts Mortality in DLBCL Patients Younger Than 60 Years.

    Full text link
    [en] BACKGROUND: Muscle depletion (MD) assessed by computed tomography (CT) has been shown to be a predictive marker in solid tumors, but has not been assessed in non-Hodgkin's lymphomas. Despite software improvements, MD measurement remains highly time-consuming and cannot be used in clinical practice. METHODS: This study reports the development of a Deep-Learning automatic segmentation algorithm (DLASA) to measure MD, and investigate its predictive value in a cohort of 656 diffuse large B cell lymphoma (DLBCL) patients included in the GAINED phase III prospective trial (NCT01659099). RESULTS: After training on a series of 190 patients, the DLASA achieved a Dice coefficient of 0.97 ± 0.03. In the cohort, the median skeletal muscle index was 50.2 cm2/m2 and median muscle attenuation (MA) was 36.1 Hounsfield units (HU). No impact of sarcopenia was found on either progression free survival (PFS) or overall survival (OS). Muscular hypodensity, defined as MA below the tenth percentile according to sex, was associated with a lower OS and PFS, respectively (HR = 2.80 (95% CI 1.58-4.95), p < 0.001, and HR = 2.22 (95% CI 1.43-3.45), p < 0.001). Muscular hypodensity appears to be an independent risk factor for mortality in DLBCL and because of DLASA can be estimated in routine practice
    corecore