754 research outputs found

    The Intermediate Scale MSSM, the Higgs Mass and F-theory Unification

    Full text link
    Even if SUSY is not present at the Electro-Weak scale, string theory suggests its presence at some scale M_{SS} below the string scale M_s to guarantee the absence of tachyons. We explore the possible value of M_{SS} consistent with gauge coupling unification and known sources of SUSY breaking in string theory. Within F-theory SU(5) unification these two requirements fix M_{SS} ~ 5 x 10^{10} GeV at an intermediate scale and a unification scale M_c ~ 3 x 10^{14} GeV. As a direct consequence one also predicts the vanishing of the quartic Higgs SM self-coupling at M_{SS} ~10^{11} GeV. This is tantalizingly consistent with recent LHC hints of a Higgs mass in the region 124-126 GeV. With such a low unification scale M_c ~ 3 x 10^{14} GeV one may worry about too fast proton decay via dimension 6 operators. However in the F-theory GUT context SU(5) is broken to the SM via hypercharge flux. We show that this hypercharge flux deforms the SM fermion wave functions leading to a suppression, avoiding in this way the strong experimental proton decay constraints. In these constructions there is generically an axion with a scale of size f_a ~ M_c/(4\pi)^2 ~ 10^{12} GeV which could solve the strong CP problem and provide for the observed dark matter. The prize to pay for these attractive features is to assume that the hierarchy problem is solved due to anthropic selection in a string landscape.Comment: 48 pages, 8 figures. v3: further minor correction

    The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer

    Get PDF
    The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer

    An Alternative Yukawa Unified SUSY Scenario

    Full text link
    Supersymmetric SO(10) Grand Unified Theories with Yukawa unification represent an appealing possibility for physics beyond the Standard Model. However Yukawa unification is made difficult by large threshold corrections to the bottom mass. Generally one is led to consider models where the sfermion masses are large in order to suppress these corrections. Here we present another possibility, in which the top and bottom GUT scale Yukawa couplings are equal to a component of the charged lepton Yukawa matrix at the GUT scale in a basis where this matrix is not diagonal. Physically, this weak eigenstate Yukawa unification scenario corresponds to the case where the charged leptons that are in the 16 of SO(10) containing the top and bottom quarks mix with their counterparts in another SO(10) multiplet. Diagonalizing the resulting Yukawa matrix introduces mixings in the neutrino sector. Specifically we find that for a large region of parameter space with relatively light sparticles, and which has not been ruled out by current LHC or other data, the mixing induced in the neutrino sector is such that sin22Θ231sin^2 2\Theta_{23} \approx 1, in agreement with data. The phenomenological implications are analyzed in some detail.Comment: 32 pages, 22 Figure

    Failure patterns and survival outcomes in triple negative breast cancer (TNBC): a 15 year comparison of 448 non-Hispanic black and white women

    Get PDF
    Purpose: Triple negative breast cancer (TNBC) is a distinct subtype of breast cancer with unique pathologic, molecular and clinical behavior. It occurs more frequently in young blacks and has been reported to have a shorter disease-free interval. We undertook this study to analyze the demographic characteristics, failure patterns, and survival outcomes in this disease. Methods: A total of 448 non-Hispanic black and white women were identified over a 15 year period from 1996 to 2011. Demographic and clinical information including age, race, menopausal status, stage, tumor characteristics, and treatments were collected. Fisher’s exact test and multivariable Cox regression were used to compare failure patterns and survival outcomes between races. Results: 49 % (n = 223) were black. 59 % patients were between 41 and 60 years, with 18 % ≤40 years. 57 % were premenopausal and 89 % had grade 3 tumors. Stage II (47 %) was most frequent stage at diagnosis followed by stage III (28 %). 32 % had lymphovascular invasion. Adjusting for age, stage, and grade, there was no difference in survival outcomes (OS, DFS, LFFS, and DFFS) between the two races. 62 (14 %) patients failed locally either in ipsilateral breast or chest wall, and 19 (4 %) failed in the regional lymphatics. Lung (18 %) was the most frequent distant failure site with <12 % each failing in brain, liver and bones. Conclusion: Failure patterns and survival outcomes did not differ by race in this large collection of TNBC cases. Lung was the predominate site of distant failure followed by brain, bone, and liver. Few patients failed in the regional lymphatics

    Transient Facial Nerve Paralysis (Bell's Palsy) following Intranasal Delivery of a Genetically Detoxified Mutant of Escherichia coli Heat Labile Toxin

    Get PDF
    BACKGROUND: An association was previously established between facial nerve paralysis (Bell's palsy) and intranasal administration of an inactivated influenza virosome vaccine containing an enzymatically active Escherichia coli Heat Labile Toxin (LT) adjuvant. The individual component(s) responsible for paralysis were not identified, and the vaccine was withdrawn. METHODOLOGY/PRINCIPAL FINDINGS: Subjects participating in two contemporaneous non-randomized Phase 1 clinical trials of nasal subunit vaccines against Human Immunodeficiency Virus and tuberculosis, both of which employed an enzymatically inactive non-toxic mutant LT adjuvant (LTK63), underwent active follow-up for adverse events using diary-cards and clinical examination. Two healthy subjects experienced transient peripheral facial nerve palsies 44 and 60 days after passive nasal instillation of LTK63, possibly a result of retrograde axonal transport after neuronal ganglioside binding or an inflammatory immune response, but without exaggerated immune responses to LTK63. CONCLUSIONS/SIGNIFICANCE: While the unique anatomical predisposition of the facial nerve to compression suggests nasal delivery of neuronal-binding LT-derived adjuvants is inadvisable, their continued investigation as topical or mucosal adjuvants and antigens appears warranted on the basis of longstanding safety via oral, percutaneous, and other mucosal routes

    Modular hybrid total hip arthroplasty. Experimental study in dogs

    Get PDF
    Background: This prospective experimental study evaluated the surgical procedure and results of modular hybrid total hip arthroplasty in dogs.Methods: Ten skeletally mature healthy mongrel dogs with weights varying between 19 and 27 kg were used. Cemented modular femoral stems and uncemented porous-coated acetabular cups were employed. Clinical and radiographic evaluations were performed before surgery and at 30, 60, 90, 120, 180 and 360 days post-operation.Results: Excellent weight bearing was noticed in the operated limb in seven dogs. Dislocation followed by loosening of the prosthesis was noticed in two dogs, which were therefore properly treated with a femoral head osteotomy. Femoral fracture occurred in one dog, which was promptly treated with full implant removal and femoral osteosynthesis.Conclusions: The canine modular hybrid total hip arthroplasty provided excellent functionality of the operated limb

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model.

    Get PDF
    Abstract Background Macrophages play diverse roles in mammary gland development and breast cancer. CC-chemokine ligand 2 (CCL2) is an inflammatory cytokine that recruits macrophages to sites of injury. Although CCL2 has been detected in human and mouse mammary epithelium, its role in regulating mammary gland development and cancer risk has not been explored. Methods Transgenic mice were generated wherein CCL2 is driven by the mammary epithelial cell-specific mouse mammary tumour virus 206 (MMTV) promoter. Estrous cycles were tracked in adult transgenic and non-transgenic FVB mice, and mammary glands collected at the four different stages of the cycle. Dissected mammary glands were assessed for cyclical morphological changes, proliferation and apoptosis of epithelium, macrophage abundance and collagen deposition, and mRNA encoding matrix remodelling enzymes. Another cohort of control and transgenic mice received carcinogen 7,12-Dimethylbenz(a)anthracene (DMBA) and tumour development was monitored weekly. CCL2 protein was also quantified in paired samples of human breast tissue with high and low mammographic density. Results Overexpression of CCL2 in the mammary epithelium resulted in an increased number of macrophages, increased density of stroma and collagen and elevated mRNA encoding matrix remodelling enzymes lysyl oxidase (LOX) and tissue inhibitor of matrix metalloproteinases (TIMP)3 compared to non-transgenic controls. Transgenic mice also exhibited increased susceptibility to development of DMBA-induced mammary tumours. In a paired sample cohort of human breast tissue, abundance of epithelial-cell-associated CCL2 was higher in breast tissue of high mammographic density compared to tissue of low mammographic density. Conclusions Constitutive expression of CCL2 by the mouse mammary epithelium induces a state of low level chronic inflammation that increases stromal density and elevates cancer risk. We propose that CCL2-driven inflammation contributes to the increased risk of breast cancer observed in women with high mammographic density
    corecore