27 research outputs found

    Oxytocin: Crossing the Bridge between Basic Science and Pharmacotherapy

    Get PDF
    Is oxytocin the hormone of happiness? Probably not. However, this small nine amino acid peptide is involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterus contraction, milk ejection, maternal behavior, osteoporosis, diabetes, cancer, social bonding, and stress, which makes oxytocin and its receptor potential candidates as targets for drug therapy. In this review, we address the issues of drug design and specificity and focus our discussion on recent findings on oxytocin and its heterotrimeric G protein-coupled receptor OTR. In this regard, we will highlight the following topics: (i) the role of oxytocin in behavior and affectivity, (ii) the relationship between oxytocin and stress with emphasis on the hypothalamo–pituitary–adrenal axis, (iii) the involvement of oxytocin in pain regulation and nociception, (iv) the specific action mechanisms of oxytocin on intracellular Ca2+ in the hypothalamo neurohypophysial system (HNS) cell bodies, (v) newly generated transgenic rats tagged by a visible fluorescent protein to study the physiology of vasopressin and oxytocin, and (vi) the action of the neurohypophysial hormone outside the central nervous system, including the myometrium, heart and peripheral nervous system. As a short nine amino acid peptide, closely related to its partner peptide vasopressin, oxytocin appears to be ideal for the design of agonists and antagonists of its receptor. In addition, not only the hormone itself and its binding to OTR, but also its synthesis, storage and release can be endogenously and exogenously regulated to counteract pathophysiological states. Understanding the fundamental physiopharmacology of the effects of oxytocin is an important and necessary approach for developing a potential pharmacotherapy

    Screening out irrelevant cell-based models of disease

    Get PDF
    The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell-and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates

    Selectivity of d[Cha(4)]AVP and SSR149415 at human vasopressin and oxytocin receptors: evidence that SSR149415 is a mixed vasopressin V(1b)/oxytocin receptor antagonist

    No full text
    1. A possible role of arginine vasopressin (AVP) V(1b) receptor subtype in stress-related disorders has been recently highlighted by the discovery of the agonist [1-deamino-4-cyclohexylalanine] AVP (d[Cha(4)]AVP) and the antagonist SSR149415. Both compounds have been proposed to target specifically V(1b) receptors, since the reported affinities for the related V(1a), V(2) and oxytocin receptors are in the micromolar or submicromolar range. In the present study, we further investigated the binding affinities of d[Cha(4)]AVP and SSR149415 at recombinant human vasopressin V(1b) (hV(1b)) and oxytocin (hOT) receptors expressed in Chinese hamster ovary (CHO) cells and functional properties of both compounds at hV(1b), hV(1a), hV(2) and hOT receptors. 2. d[Cha(4)]AVP bound to hV(1b) receptors and hOT receptors with pK(i) values of 9.68±0.06 and 7.68±0.09, respectively. SSR149415 showed pK(i) values of 9.34±0.06 at hV(1b) and 8.82±0.16 at hOT receptors. 3. d[Cha(4)]AVP stimulated [Ca(2+)](i) increase in hV(1b)-CHO cells with a pEC(50) value of 10.05±0.15. It showed pEC(50) values of 6.53±0.17 and 5.92±0.02 at hV(1a) and hV(2) receptors, respectively, and behaved as a weak antagonist at hOT receptors (pK(B)=6.31±0.12). SSR149415 inhibited the agonist-induced [Ca(2+)](i) increase with pK(B) values of 9.19±0.07 in hV(1b)-CHO and 8.72±0.15 in hOT-CHO cells. A functional pK(i) value of 7.23±0.10 was found for SSR1494151 at hV(1a) receptors, whereas it did not inhibit 20 nM AVP response at hV(2) receptors up to 3 μM. 4. Data obtained confirmed the high potency and selectivity of d[Cha(4)]AVP at hV(1b) receptors, but revealed that SSR149415, in addition to the high potency at hV(1b) receptors, displays a significant antagonism at hOT receptors
    corecore