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Abstract	  
	  
The common and persistent failures to translate promising preclinical drug candidates into 

clinical success highlight the limited effectiveness of disease models currently used in 

drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-

based model systems, coupled with a detachment from clinical practice during assay 

validation, contributes to ineffective translational research. To help address these issues 

and stimulate debate, here we propose a set of principles to facilitate the definition and 

development of disease-relevant assays, and we discuss new opportunities for exploiting 

the latest advances in cell-based assay technologies in drug discovery, including induced 

pluripotent stem cells, 3D co-culture and organ-on-a-chip systems, complemented by 

advances in single-cell imaging and gene editing technologies. Funding to support 

precompetitive, multidisciplinary collaboration to develop novel preclinical models and 

cell-based screening technologies could have a key role in improving their clinical 

relevance, and ultimately increase clinical success rates [Au: edits to shorten OK?].	  

	   	  



	  

3	  
	  

	  
	  

Introduction 

Although there have been many notable drug development achievements in recent years, 

several disease areas, such as neurodegeneration and aggressive cancers, remain largely 

intractable [Au:OK?]. For example, substantial investment in the development of novel 

therapeutics for Alzheimer disease, Parkinson disease and motor neuron diseases has 

largely failed 1-3. This failure can be attributed, in part, to our limited understanding of the 

targets that may prevent or repair neuronal damage, and to a lack of robust disease-

relevant preclinical models 1,4. In the field of cancer, important progress has been made in 

the discovery of new drugs, including those based on target-directed precision medicine 

strategies 5. However, for aggressive cancers, such as glioma, pancreatic, oesophageal and 

several lung cancers, many promising drug candidates developed from standard cell-line 

screens and in vivo xenograft models did not show clinical efficacy. The poor clinical 

translation can largely be attributed to the failure of these models to recapitulate key 

pathophysiological features of the human disease, including complex inter- and intra-

tumour heterogeneity, poor drug penetration through tissue, host-stroma–tumour cell 

interactions, and the cancer stem cell niche, all of which may have profound effects on 

therapeutic response in vivo. In addition, given the periodic emergence of new and old 

infections 6, and the pressing challenges from antimicrobial resistance and pandemic 

threats such as Ebola and Zika, modern disease-relevant cell-based phenotypic assay 

methodologies may represent valuable assets for improving our knowledge on the 

dynamics of host–pathogen interactions in their natural environment 7 and the 

development of new therapies (Box 1) [Au:OK?]. Finally, a substantial proportion of 
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clinical trial failures for novel medicines overall are due to safety issues such as 

cardiotoxicity and hepatotoxicity 8, and serious toxicity issues are often discovered only 

after clinical development has been completed 910. Thus, more predictive toxicology 

models would contribute significantly towards more successful clinical translation and 

improved patient care [Au:OK?].  

 

Despite advances in target- and cell-based screening technologies, the majority of drug 

discovery projects remain dependent on cell culture systems that were developed several 

decades ago incorporating immortalized cell lines, the use of which many consider to be 

questionable owing to their poor disease relevance. While many traditional models 

provide valuable tools for studying drug mechanism-of-action and have helped identify 

successful drug candidates in the past, it is our opinion that the widespread use of 

contemporary cell culture assay systems must be re-visited and that efforts should be 

directed toward development of new models, new assay formats and innovative screening 

technologies which better recapitulate in vivo physiology. 

 

In this article, after briefly summarizing the limitations of traditional cell-based models of 

disease [Au:OK?], we discuss how emerging developments in (patient-derived) ex-vivo 

cultures, induced pluripotent stem cell (iPSC) technology, 3D co-culture and organotypic 

systems, complemented by advances in single-cell imaging, microfluidics and gene 

editing technologies, are well-positioned to advance preclinical disease modelling and 

drug screening across challenging disease areas. We outline a set of principles for 

defining “disease-relevant assays” (Table 1), and highlight methodological and analytical 

gaps, fundamental challenges and new opportunities to exploit and combine more 
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advanced in vitro models with emerging technologies. We conclude by discussing the 

need to further evolve translational funding schemes and precompetitive research 

consortia to support the future development of new preclinical models and assay-

screening technologies that provide more robust target validation and greater clinical 

predictivity. 

 

Limitations of traditional disease models 

Traditional cell culture methods typically rely on cancer cells or immortalized cells grown 

within artificial environments, on non-physiological substrates such as functionalized 

plastic and glass. While these methods have facilitated the discovery of many basic 

biological processes, they often fail to provide an adequate platform for drug discovery 

owing to their inadequate representation of key physiological characteristics. These 

problems can be broadly categorized into the following limitations.  

 

Limitations due to cells. Most cell-based assay screens have traditionally been performed 

using transformed or immortalized cell lines. These have been cultured for many 

generations, resulting in a substantial drift in their genetic, epigenetic and physiological 

characteristics, which means they are not a good model of primary tissue cells 11,12. The 

gross genetic and epigenetic abnormalities, characterized by multiple genetic 

rearrangements and amplified gene copy numbers, associated with long term culture 

confound pharmacogenomic and functional genomic studies. Genetic adaptation resulting 

from long-term in vitro cultures also contributes to heterogeneity in cultures of the same 

cell line between passages, batches and laboratories. 
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Limitations due to culture conditions. The media most commonly used for cell culture 

are designed for fast cell growth, incorporating large concentrations of fetal serum and 

nutrients, which may promote dedifferentiation of primary cell types into more embryonic 

or foetal-like phenotypes 13. With the development of primary cell and differentiated stem 

cell cultures, the usage of high glucose and growth factor media has been eschewed for 

defined culture media to promote cellular identity rather than rapid growth. Cells are often 

grown in standard incubators under high oxygen partial pressure (approximately 20%), 

which does not represent the steady state conditions of human organs and tissues 

(fluctuating between 1%; dermis, and 14 %; arterial blood) 14-17. Such conditions poorly 

recapitulate the distinct microenvironments that define normal and diseased tissue 

phenotypes. This has a profound impact on the cell metabolism, reactive oxygen species 

(ROS) production, mitochondrial functions and ultimately on the differentiation and 

function of cells 18,19. Additionally, conventional tissue culture systems do not readily 

permit the formation of short-range gradients of nutrients, hormones and oxygen that are 

often experienced by cells depending on the distance to the nearest blood vessel. The liver 

is a well-known example of this, with gradients in the lobules between the central vein 

and the portal artery leading to zonation 20. This can be mimicked with the adoption of 

microfluidic systems that deliver nutrients, dissolve gases and remove waste products 21. 

 

Limitations due to lack of appropriate cell culture substrates and bioengineering tools. 

The 2D planar substrates on which cells are typically grown are stiff, demonstrating high 

(gigapascal) tensile strength and mechanical resistance to deformation, which are unlike 

most substrates found in a human body (milli– to kilopascal,) with the exception of bone 

and cartilage 22. Hence the plastic or glass used in cell culture may be far from 
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representing the normal in vivo mechanical environment 23,24. For example, in the case of 

liver culture, most differentiation protocols require the use of sandwich cultures, where 

the cells are grown between layers of either collagen or other extracellular matrix (ECM) 

proteins. The mechanical properties of these supporting matrices are generally not well 

characterised, despite the fact that such properties are known to have a significant impact 

on cellular function and differentiation in tissues 25,26. In these types of experiments where 

a minimal quantity of deposed hydrogel is employed, it is likely that the cells would 

encounter a stiff environment, which the liver would normally only encounter during 

fibrosis or cirrhosis. Thus, toxicology assays are typically carried out under pathological 

rather than healthy liver conditions. Microfluidic devices, which utilize mechanical 

actuation systems to recapitulate mechanical forces or generate the shear forces that 

tissues experience in living bodies are beginning to be used; however, they will require 

further development and refinement if they are to be used for more general screening 

applications 27.  

 

A further challenge evident in tissue modelling within current in vitro assays is the 

absence of more physiologically relevant extracellular matrix (ECM). For example, the 

popular use of Matrigel and collagen type I as an ECM substrate in hepatocyte cultures 

does not represent the predominant ECM proteins found in the liver 28. Many pathologies 

are associated with changes in ECM production that have significant impact on cell and 

tissue function. Thus, recapitulating both physiological and pathophysiological ECM 

composition and structure is an important consideration for in vitro cellular models.  
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Limitations due to lack of appropriate co-culture methods. Cell-culture screening assays 

traditionally use a single cell type, whereas cells in vivo are either in direct contact or 

communicate over a long range with many different cell types. As most biological 

processes and pathologies involve the interaction of multiple cell types, ideally, these 

should be incorporated into in vitro cellular assays whenever possible. For example, most 

toxicology assays use only hepatocytes, but while 80% of the liver volume consists of 

hepatocytes (60% of the cells), other important cell types within the liver include stellate 

cells, resident macrophages (Kupffer cells), sinusoidal endothelial cells and some non-

parenchymal cells. Both stellate cells and Kupffer cells are known to be important for 

some compound toxicities and should therefore be incorporated into in vitro toxicology 

assays 29,30. Neurodegeneration, where both astrocytes and glial cells are responsible for 

protecting neurons but are also known to cause neural death, provides a compelling case 

for the use of mixed cell cultures of distinct cell types 31. Further development of co-

culture methods, which incorporate disease cells with relevant immune subcompartments, 

are also urgently needed to help better understand and address the role of the host immune 

system in the pathogenesis and therapeutic outcomes of many diseases 32. These 

considerations are of particular importance for pathogen biology and infectious diseases, 

which operate at multiple cellular and tissue levels (Box 1).  

 

Tackling the limitations. Addressing the translational gaps presented by current 

limitations in preclinical assays by employing new models, which better predict efficacy 

or toxicity observed in patients still presents a number of imposing challenges including 

how to: mimic the microenvironment and heterogeneity of normal and disease tissue; take 

into account the environmental and genetic/epigenetic factors governing disease aetiology 
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and therapeutic outcomes; understand the effect of drugs upon the whole physiological 

entity, e.g. across multiple cell types and organs of the human body; and interpret the role 

of the host immune system in the pathogenesis of a particular disease. While it is clear 

that no single preclinical model or screening assay will faithfully recapitulate the full 

complexity of human disease, we outline below and in Figure 1 the latest developments in 

cell-based models and assay technologies that begin to address the limitations of 

traditional and contemporary in vitro assays. 

 

Developments to improve disease modelling [Au:OK?]  

Primary and patient-derived cell models. The adaptation of patient-derived primary cell 

samples, as well as fresh human tissue samples, for ex vivo and in vitro translational 

research applications aims to overcome many of the disadvantages of using transformed 

cell lines for drug discovery 33. They also offer a more clinically relevant model for 

testing novel gene and cell-based therapies. However, the lack of culture systems with the 

robustness, scalability and flexibility needed by companies has hampered the adoption of 

in vitro primary cell-based research tools, including patient-derived cell models, at the 

earliest stages of drug development.  

 

In cancer, highly selective drugs targeted at genetically defined clinical subtypes are 

needed to support a more patient-centric approach to drug development 34,35. Potential 

drugs have been tested in vitro and ex vivo against well-characterized patient-derived 

primary cancer subtypes for various cancers, but often without a direct impact on 

treatment 36-38. In leukemias, however, where the ex vivo material (e.g. suspension cells) is 

more readily available for drug testing than in solid tumours, patient-derived samples 
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have recently been utilized for potential drug repositioning 39,40 and combined with 

molecular profiling to identify clinically actionable drugs for personalised AML therapy 

40 [Au:OK?]. Although primary leukemic cells can be used without further expansion for 

ex vivo drug testing 33,41, the drug responses may vary depending on the cell culture assay 

conditions. Importantly, several studies highlight the importance of the interaction of 

leukemic cells with the bone marrow stromal microenvironment, which can be partly 

mimicked by using co-cultures of leukemic cells with human bone marrow-derived 

mesenchymal stem cells 42,43. 

 

The extension of patient-centric primary ex vivo drug profiling to higher-throughput 

applications and primary cells derived from solid tumours or normal tissue presents 

several challenges 44. The development of co-culture protocols 45 has enabled a relatively 

rapid production and scale-up of high amounts of conditionally reprogrammed cells from 

surgical and accessible biopsy specimens, both from healthy and tumorigenic tissues such 

as lung, breast, prostate, pancreas, colon, and kidney 44,46. In vitro cell culture conditions 

modify cells over time, and may even lead to loss of expression markers of the original 

sample and the enrichment of specific cell populations. It is therefore essential to ensure 

that these cells represent the original tissue and genomic background of the individuals 

from whom they were derived by extensive genotypic and single-cell phenotypic 

characterization. Living organoid biobanks for solid tumours can complement cell line- 

and xenograft-based drug studies by providing an improved model for complex tissue 

architecture. This was demonstrated in a recent proof-of-concept study, where the living 

organoids of 20 colorectal cancer patients, sharing identical gene expression profiles and 

genetics with the corresponding original tumours, were screened against 83 compounds; 
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findings revealed good reproducibility and correlation with individual oncogenic 

mutations 47.  

 

Overcoming the challenges related to the expansion of primary patient-derived ex vivo 

cultures for higher-throughput screening across distinct patient cohorts will require access 

to numerous representative patient samples for simultaneous testing, scale-up of limited 

primary cell material, and effective integration of drug sensitivity phenotypic data with 

the molecular characterization and clinical data associated with each patient sample. 

Access to high-quality patient-derived primary samples requires close collaboration 

between researchers, clinics and biobanks to find representative samples combined with 

relevant clinical data, and to establish standardized sample handling procedures for 

sensitive live tissues and cells. The Finnish Hematology Registry Biobank (FHRB) 

provides an exemplar of an operative biobank, functioning as a valuable source of patient 

material for precision medicine approaches in leukemia 40,48. The exploitation of biobanks 

to support drug testing of ex vivo patient cells collected from across both large and smaller 

patient cohorts can help to prioritize and de-risk drug candidates for larger-scale clinical 

testing, to support patient stratified medicine strategies and to systematically identify 

novel drug-repositioning opportunities 48. 

 

Further expansion of primary cells for high-throughput screening (HTS) of small-

molecule or antibody libraries remains challenging, however, and will require 

development of new technology platforms, including miniaturized assay screening 

formats and defined culture conditions, that provide sufficient sample throughput and 

stability.  
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Until these challenges are met, HTS of compound libraries across transformed and 

immortalized cell line models, when integrated with molecular profiling, may still provide 

useful opportunities to advance drug mechanism-of-action studies, target identification 

and patient stratification hypotheses. A recent study used correlation-based analyses to 

associate the sensitivity of 481 compounds tested across 860 human cancer cell lines with 

the basal gene expression profile of each cell line to reveal new target mechanisms for 

several compounds 49. Furthermore, application of multiparametric genetic or image-

based phenotypic profiling assays in established cell lines, combined with multivariate 

statistics and machine learning methods, has been used to pattern match compound 

induced transcriptomic or phenotypic fingerprints with reference data sets to predict 

compound mechanism-of-action and postulate new disease indications 50-52. Thus, while 

transformed cell line assays may poorly represent disease, integration with in-depth 

genomic and phenotypic profiling to understand mechanism-of-action and elucidate new 

targets may represent the best use of these well-characterized transformed or 

immortalized cell line culture resources. 

 

Induced pluripotent stem cell technology. While	  primary	  human	  and	  patient-‐derived	  

ex	   vivo	   models	   are	   considered	   to	   be	   of	   high	   value,	   the	   availability	   of	   the	   relevant	  

tissue	  is	  a	  limiting	  factor	  for	  modelling	  many	  disease	  phenotypes.	  The	  ability	  to	  scale	  

up	   and	   expand	   primary	   cell-‐derived	   cultures	   for	   HTS	   applications,	   whilst	   still	  

maintaining	   the	  relevant	  genomic	  epigenetic	  and	  tissue	  architecture	  of	   the	  original	  

tissue,	  also	  remains	  a	  challenge.	  These	  limitations	  have	  hampered	  drug	  discovery	  in	  

several	  disease	  areas,	  most	  notably	  in	  neurodegeneration	  and	  psychiatric	  disorders.	  	  
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A major breakthrough in the ability to develop tissue specific cell-based disease models, 

including patient-derived cell assays at scale, has been achieved through the development 

of iPSC technology 53. New opportunities presented by iPSC technology in disease 

modelling and translational research have recently been reviewed in depth 54,55. We 

therefore focus our discussion below on advantages and some limitations specifically 

related to cell-based assay development and screening, and selected example applications 

for neurodegenerative diseases, cardiotoxicity testing and metabolic diseases [Au:OK?].  

 

iPSCs have several advantages as a platform for drug screening. They represent normal 

primary cells with a mostly stable genotype compared with transformed cell lines and 

they possess an intrinsic capacity for self-renewal, facilitating their propagation and 

expansion for drug screening. iPSC can also be reprogrammed into many different tissue 

specific cell types and can be derived from any patient in unlimited quantities. 

Importantly, iPSC are amenable to detailed genetic characterization and to new gene 

editing technology, therefore presenting an excellent opportunity for directly linking 

phenotype to genotypes. These properties facilitate pharmacogenomics studies and the 

development of matched pairs of genetically defined disease phenotypes and isogenic 

controls for screening.  

 

iPSCs also have several limitations. Firstly, the persistence of residual epigenetic 

memory, from the somatic cells from which the iPSC cells were derived, may adversely 

influence or confound phenotypic response to testing candidate therapies and in drug 

screening 56,57. Secondly, iPSC disease models have tended to focus on rare monogenic 
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hereditary forms of disease rather than more common spontaneous forms that are 

characterized by complex genetic traits involving multiple unknown genetic and 

epigenetic factors. New advances in multi-gene editing and synthetic biology approaches 

in patient-derived iPSC models may begin to address these challenges 58-60. Thirdly the 

rapid differentiation protocols and embryonic nature of iPSCs and their derivatives may 

not be optimal for modelling late-onset disorders associated with aging. Long 

differentiation protocols have been applied to help develop mature differentiated cell 

types and exogenous stressors or extopic expression age related genes have been used to 

induce aging-like features of iPSC-derived models of Parkinson disease 61 [Au:OK?]. 

However, these approaches only partly address this issue of cellular aging.  Finally, a 

practical limitation of iPSC models is the long differentiation protocols required. Despite 

these limitations, iPSC-derived [Au:OK?] cultures of cardiomyocytes 62-66 neurons 66-68, 

intestinal 69 and lung 70 tissue have been developed as heart, cerebral, intestinal and 

pulmonary disease models, and have been used in drug screening 62,63,65-67,71.  

 

For example, the development of automated phenotypic screening assays incorporating 

differentiated iPSCs that address specific neurodegenerative diseases has recently begun 

to yield new potential therapeutic targets and lead compounds. Neurons made from 

iPSCs, derived from a patient with Rett syndrome, exhibiting reduced spine density and 

smaller cell bodies, were employed in a drug screen that identified two molecules, IGF1 

[Au:OK?] and gentamycin, able to rescue synaptic defects 72,73. In a recent study of a 

large cohort of healthy controls and ALS patients, fibroblasts were reprogrammed into 

pluripotency. The cells were subsequently configured into a high-content chemical screen, 

resulting in the identification of several FDA-approved small molecule modulators, 
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demonstrating the feasibility of patient-derived iPSC-based disease modelling for drug 

repurposing and screening 74. In another study, α-synuclein-defective cortical neurons 

were generated using iPSC from patients at risk of developing Parkinson’s disease. By 

identifying pathogenic phenotypic endpoints suitable for cell-based screening assays, the 

studies identified new potential therapeutic targets, such as the ubiquitin ligase NEDD 

which rescues the α-synuclein toxicity associated with Parkinson’s patient-derived 

neurons 75. Another recent small-molecule chemical screen using human iPSC-derived 

[Au:OK?] dopaminergic neurons in a rapid 96-well screening format identified several 

potential neuroprotective candidates for Parkinson’s disease 76. 

 

Cardiotoxicity testing has traditionally been focused on in vitro electrophysiology assays 

to assess the risk of arrhythmia, yet a major limitation has been the dependence on use of 

cell lines engineered to express single ion channels 77,78. These reductionist approaches 

are poor predictors of the risk of arrhythmias since cardiac action potential in vivo 

involves the cooperation of multiple ion channels. Stem-cell technology can be used to 

provide an unlimited supply of cardiomyocytes that more faithfully reproduce human 

cardiac electrophysiology and that can be used for in vitro HTS approaches, which are 

beginning to revolutionize the field 79. However, current HTS approaches are still limited 

by the maturation state of stem-cell-derived cells, which do not recapitulate completely 

the contractile function of adult cardiomyocytes 80. In vitro engineered 2D 81 and 3D 82 

cardiac tissue models have now been developed as low-or medium-throughput screening 

platforms using stem-cell-derived cardiomyocytes with improved maturation status and 

hold great promise for the future study of cardiotoxicity and myocardial dysfunction. 

Screening platforms have also been developed from neonatal rat primary cardiac 
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myocytes 83,84. While highly efficient, some functional discrepancies to human models 

exist. Medium and high-throughput screening technologies for recording cardiomyocyte 

function currently span from the classic radio-ligand binding assays 77 to automated patch 

clamp 85,86 and microelectrode arrays (MEA) 78,83,86. Optical-based high-throughput assays 

have been developed for monitoring voltage or ion sensitive dyes using kinetic plate 

readers and high content imaging platforms 78,87-89. Stem-cell-derived cardiomyocytes in 

combination with image-based high-content screening technology have proven to be very 

effective for analyzing structural cardiotoxicity associated with anti-cancer therapies 90. 

Drug-induced heart failure can also arise from impaired cardiac function characterized by 

changes in cardiomyocyte contractility, which can be studied using real-time cell analysis 

(RTCA), an impedance-based high throughput technology 91. However, monitoring 

cardiomyocyte contractility is rarely assessed in preclinical toxicology studies and 

remains a particularly challenging task due to the high speed of cell beating and the 

complexity of the process, which requires advanced phenotypic approaches. Several new 

methods have been developed to quantify cardiomyocyte contractility based on digital 

holographic microscopy (DHM) 92, muscular tissue films (MTF) 93 or dynamic monolayer 

force microscopy (DMFM) 94. With the exception of label-free DHM, which is relatively 

inexpensive, the complexity and cost of many of the other techniques currently limit their 

application to HTS. 

 

Culture of patient-derived fibroblasts have been used extensively to characterize and/or to 

find new treatments for inherited metabolic diseases, such as genetic enzyme deficiencies 

and lipid storage diseases (e.g, Niemann-Pick disease type C 95). The advantage of 

fibroblasts is that they are easy to collect, store and expand for several passages and, in 
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general, they do not require complex culture conditions. Importantly, the fibroblasts can 

be reprogrammed to iPSCs and further differentiated into the most appropriate cell types 

relevant to specific metabolic disorders. In diabetes, this approach has been utilized for in 

vitro production of functional stem cell-derived β-cells from fibroblasts of diabetic 

patients 96, which can be used to search for new diabetes targets and molecules that 

promote pancreatic β-cell proliferation and function or suppress β-cell apoptosis 97 

[Au:OK?]. Similar approaches exploiting iPSC technology are being applied to other 

diseases such as muscular dystrophies 98, cardiovascular disease 99 and aldehyde 

dehydrogenase 2 deficiency 100. Importantly, many of these iPSC models can be readily 

expanded for HTS.  

 

Overall, it is too early to accurately measure the impact of iPSC technology. However, 

differentiated iPSC assays, combined with more informative functional screening 

technology, provide improved models of normal and diseased tissue compared with 

traditional assays, leading many investigators to anticipate they will ultimately improve 

clinical success rates. 

 

 [Au: the section on infectious diseases did not seem to fit well with the flow here, so 

I’ve suggested creating a text box] 

[Au: the section on genome editing has been moved up to help the flow]  

 

Precise genome editing. Advances in genome-editing tools have opened new avenues for 

developing cheaper, faster, and more translatable in vitro and in vivo models of human 

diseases. Most prominent is the recent discovery of CRISPR-Cas9 technology, and its 
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exploitation as a gene editing tool in mammalian cell systems101. Briefly,	   CRISPR-‐Cas9	  

gene	   editing	   technology	   consists	   of	   two	   components:	   a	   DNA	   sequence	   specific	  

“guide”	   RNA	   (gRNA)	   and	   a	   non-‐specific	   CRISPR-‐associated	   endonuclease	   (Cas9).	  

These	  components	  are	   introduced	  into	  model	  cells	  and	  once	  expressed	  in	  cells,	   the	  

Cas9	  protein	  and	  the	  gRNA	  form	  a	  riboprotein	  complex,	  which	  will	  bind	  and	  cleave	  

the	   DNA	   if	   sufficient	   homology	   exists	   between	   the	   gRNA	   and	   target	   sequences.	  

Subsequent	  insertion	  of	  new	  “designer”	  DNA	  sequences	  into	  the	  targeted	  site	  is	  then	  

possible	  through	  endogenous	  DNA	  repair	  mechanisms.	  More	  detailed	  information	  on	  

CRISPR-‐Cas9	  technology	  can	  be	  found	  in	  recent	  reviews	  102,103.	  The	  great advantage of 

CRISPR/Cas9 gene editing is the precise nature of the editing; initially CRISPR was 

applied to “knock-out” target genes in various cell types and organisms, but modified 

versions of the CRISPR-Cas9 system have recently been developed to recruit 

heterologous domains including transcriptional co-regulators which selectively activate or 

repress target genes 102. Additionally, to assist in genome edit detection, purification and 

visualization, epitope tags and reporter molecules have been incorporated into the genome 

editing constructs to further expand its utility to image DNA editions and their protein 

products in live cells104. In contrast to traditional genetic engineering approaches such as 

site directed mutagenesis and gene targeting in embryonic stem cells, the CRISPR-Cas9 

system is more efficient, faster and cheaper and has been used to efficiently modify 

endogenous genes in a wide variety of cell types and organisms that have traditionally 

been challenging to genetically manipulate. The ease of generating gRNAs makes 

CRISPR one of the most scalable genome editing technologies and it has been utilized for 

genome-wide screens to identify new target hypotheses and elucidate mechanism of 

existing drugs or drug resistance105-107. Further development of arrayed libraries will 
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facilitate the application of gene-editing technology to a broader range of cell-based 

phenotypic assays108. Combining technologies, such as CRISPR-Cas9 with iPSC 

technology and advancing phenotypic assay formats, presents a further opportunity to 

generate genetically defined cell-based assay models at scale, which recapitulate precise 

genetic drivers of disease aetiology. For more detailed discussion on how CRISPR-Cas9 

tools are being combined with iPSC technology to generate new disease models, high-

fidelity isogenic pairs for counter-screening, lineage reporters and to progress target 

identification and validation studies, we refer readers to the following review and methods 

articles109-111. CRISPR-Cas9 has been used in vivo to directly mutate tumour suppressor 

genes and oncogenes in the mouse liver112, demonstrating the potential to develop new in 

vivo models of disease, and custom-designed preclinical drug discovery cascades which 

bridge the gap between in vitro screening assays to in vivo proof-of-concept.  

 

3D cell culture models. Culturing cells in 3D environments can favour the formation of 

multicellular tissues with the appropriate cell–cell and cell–extracellular matrix 

interactions and architecture that are critical drivers of tissue differentiation and function. 

The use of 3D cellular models for in vitro disease modelling and screening is especially 

useful where aberrant tissue organisation is associated with disease pathology and 

progression; for example in neurodegenerative disorders, fibrosis, solid cancers and 

cystopathies.  

 

Many options for 3D in vitro and ex vivo models are emerging that utilize both natural 

and synthetic biomaterials, each with advantages and limitations (Box 2 and Figure 2). 

New 3D assay formats have been developed specifically for medium- to high–throughput 
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screening, including commercially available options, such as microtissue products 

(InSphero 3D InSight), nanoculture spheroid plates (SCIVAX), micropattern plates 

(Cytoo), aligned (NanoAligned) or randomly oriented (NanoECM) polymer nanofiber 

plates and low-density 3D cell suspension media (HappyCell), which provide robust 3D 

cell culture architecture in 96- and 384-well formats. Examples of advanced multicellular 

3D spheroid screening assays, designed to address specific clinical scenarios, include the 

application of a co-culture model composed of normal human dermal fibroblasts (NHDF) 

growing together with RFP labelled breast cancer cells for high-throughput phenotypic 

screening of radiation resistant tumour cells 113. This assay was quantified by real time 

high-content imaging in a format that is suitable for scale-up to HTS of drug 

combinations that sensitize cells to radiotherapy, chemotherapy or both [Au:OK?] 113. 

Further high-content image-based 3D spheroid assays have been applied to small-

molecule screens investigating compounds that specifically target dormant tumour cells 

within the inner core of tumour spheroids or compounds which prevent either fibroblast or 

immune invasion into tumour spheroids 114-116. Such 3D spheroid assays formats have also 

been used as tissue surrogates to study immune infiltration into specific tissue types and 

represent a rapid and cost-effective alternative to animal models for studying host-

immune response 114,115. 

 

Despite a number of successful studies demonstrating practical implementation of 3D 

assays to small-, medium- and high-throughput screening assays 113,117, adoption of 3D 

tissue culture into routine screening has been sluggish, in part owing to a number of 

remaining technical issues [Au:OK?]. First, although animal-derived basement 

membrane extract (BME) hydrogels often support the growth of difficult-to-culture cells 
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such as primary cells, their physical and chemical properties are fixed, their composition 

is undefined and there is inevitable batch-to-batch variation associated with these natural 

products, which is considered a major hindrance to obtaining reproducible results 118. To 

promote more cost-effective and reproducible 3D cell culture screening platforms, 

synthetic biomaterials have been developed (Box 2 and Figure 2). However, the lack of 

organic ECM proteins and appropriate extracellular environmental signalling cues 

mediated by ECM protein binding to cell-surface receptors limits the physiological 

relevance of synthetic 3D biomaterial substrates. Even peptide-derived gels have yet to 

recapitulate sufficient functionality for the development of 3D tissues from most cells. 

Those cells that do grow in inert hydrogels, scaffolds or in hanging drop/low attachment 

plates may do so through the secretion of endogenous extracellular matrix proteins or due 

to oncogenic mutations that confer anchorage independence. Adoption of hybrid matrices 

combining synthetic and organic biomaterial has gained recent popularity for drug testing 

in cancer cell models 119, tissue-engineering matrices 120-123, and development of more 

complex innovative immunocompetent 3D culture models comprising of dendritic cells 

co-cultured with fibroblasts and keratinocytes 114. Indeed, addition of cells responsible for 

producing the extracellular matrix in vivo (e.g. stromal fibroblasts and stellate cells in the 

case of the liver) into 3D co-cultures systems represents an alternative approach to 

incorporating more physiological ECM constituents into synthetic 3D scaffolds. 

 

Further practical limitations of 3D cell-culture models include: the high cost of 

biomaterials; higher viscosity and temperature-sensitive gelation hindering automated 

handling of gels in the liquid state; sample processing (for example, antibody staining and 

sample washing) for high-content analysis; and the challenge of defining optimal cell 
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ratios, culture conditions and ECM constituents for 3D co-culture models. However, 

integration of factorial design strategies and evolutionarily inspired genetic algorithms, 

together with advances in cell culture automation and phenotypic analysis, are well placed 

to advance complex assay optimization 124-126. Perhaps the most challenging aspect of 

high-content screening of 3D cultures, however, is image capture and analysis, which 

requires new advanced microscopy and image-informatics solutions. Nevertheless, 

emerging microfluidic and high-resolution 3D imaging technologies such as light sheet 

fluorescence microscopy (LSFM) and selective plane illumination microscopy (SPIM) 

hold great promise for advancing 3D culture-based assays, although they are not yet 

adapted to a screening setting 127. Such technologies are discussed in more depth later in 

the article [Au:OK?].  

 

The poor penetration and perfusion of drugs into 3D in vitro models can present 

limitations for drug testing and screening but also new opportunities to mimic fibrotic and 

poorly vascularized tissues associated with several diseases, where poor drug perfusion 

contributes to poor clinical efficacy 128,129. This aspect of pathophysiological drug 

resistance is not recapitulated in 2D cell culture models and may only be partly addressed 

in 3D multicellular spheroid models. This more complex aspect of disease 

pathophysiology can be recapitulated in some in vivo models, for example genetically 

engineered mouse models of pancreatic cancer 128. However, in vivo models are not 

practical, cost-effective or sufficiently rapid for screening larger numbers of candidate 

drugs. 3D organotypic in vitro co-culture [Au:OK?] assays (for example, composed of 

stromal fibroblasts and cancer cells) are faster and recapitulate the fibrosis and poor drug 

penetration observed in genetically engineered mouse models of pancreatic cancer and in 
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the human disease 130. Such assays can predict the poor clinical response of solid tumours 

to small-molecule kinase inhibitors such as dasatinib, and they are suitable for identifying 

new drugs and drug combination strategies that combat poor tissue perfusion 131,132. 

Development of such predictive preclinical assays into higher-throughput and 

reproducible screening formats is imperative.  

 

 [Au: section on assay validation moved later to help flow]  

 [Au: section on principles of disease-relevant models moved later to help the flow]  

 

Organ-on-a-chip and microfluidic technologies. New approaches that can offer a 

satisfactory level of biological complexity and clinical relevance while taking into 

account the issues of throughput, scale and cost are in great demand. One such approach 

is ‘organ-on-a-chip’ technology. These devices are essentially miniaturized microfluidic 

perfusion systems that permit long term in vitro growth and the propagation of primary, 

stem cells and tissues in a format that is both economically and ethically viable with the 

potential to scale up for high-throughput discovery campaigns. Although still early in 

their development, several organ-on-a-chip assay formats have been evaluated; a liver-

tumour-bone marrow-on-a-chip 133 and a liver-skin-intestine-kidney-on-a-chip are two 

such examples 134. The advantage of these systems is that they offer a means of modelling 

the complex tissue microenvironment and the communication between distinct tissues in 

vivo. These systems are reported to produce levels of tissue and organ functionality not 

possible with conventional 2D or 3D culture systems, e.g., kidney tubular epithelial cells 

and, as previously discussed, hepatocytes 21. 
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Another advantage of these microfluidic systems is the ability to recapitulate the 

hemodynamic forces generated by blood flow, which are important in governing normal 

homeostatic function of the endothelial cell layer lining the inner lumen of the vascular 

wall and the sub-endothelial vascular smooth muscle cells. The development of 

microfluidic perfusion chambers that recapitulate the pulsatile nature of blood flow and 

regions of high and low shear stress known to regulate endothelia and smooth cell 

function have helped in more effectively modelling normal homeostatic vascular function 

and the pathophysiology associated with cardiovascular disease 135,136 [Au:OK?]. The 

latest advances in microfuidic designs such as the multi-organ tissue flow (MOTiF) chip 

to enable more precise supply of nutrients and discharge of catabolic metabolites under 

controlled shear stress contribute to the increased utility and physiological relevance of 

microfluidic cardiovascular models 137.  

 

Other examples of recent advances in microfluidic devices for advanced cell culture 

include the lung-on-a-chip, a microfluidic system that mimics the critical physical and 

biological features typically found at the alveolar-capillary interface of the human lung. 

This system can be used to mimic complex pathophysiological responses to stimuli such 

as those elicited when bacteria and inflammatory cytokines are introduced into the 

alveolar space 27. Increasing efforts are being placed to produce cardiac tissue on 

microfluidic devices using cardiomyocyte models as beating heart-on-chip platforms 

which can be used to measure contractility and electrophysiology to test cardiac 

pharmaceuticals as well as to assess potential cardiotoxic effects during drug discovery 81 

82. 
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The development of microfluidic devices that include temporal and spatial measurements 

on single cells are further enhanced by methods that manipulate cell movement and 

collection. Hydrodynamic cell trapping systems have recently overcome the throughput 

limitations of previous methods for manipulating cells, such as acoustic tweezers or 

fluorescence-activated cell sorting, by enabling rapid, robust and high throughput 

handling of single cells 138. Microfluidic manipulation of single cells has many 

applications, including elucidating mechanisms of stem cell renewal and differentiation 

139. Miniaturized methods for manipulating and analysing small populations or single cell 

phenotypes are complemented by recent advances in ultrasensitive methods for 

proteomic, and genomic analysis 140,141. As an example, Salehi-Reyhani et al. reported the 

development of a microfluidic antibody capture chip, integrated with TIRF detection and 

robust cell lysis to monitor p53 levels within single cells 142. Progress in whole-genome 

and whole-transcriptome amplification combined with next-generation sequencing 

platforms, have facilitated the advance of single-cell genomics. An integrated 

microfluidic device, which couples single cell capture, enzymatic reaction and 

quantitative mRNA detection within a single platform, has recently been developed 143. 

This platform distinguished stochastic variation in gene expression between two distinct 

cell populations at the single-cell level, which would otherwise be masked when analysed 

at the population level 143.  

 

Combining microfluidics with image-based or label-free methods for quantifying cell 

phenotypes at the single-cell level enables miniaturized phenotypic analysis of rare sub-

populations and primary cells without the need for bulk expansion in vitro. Developments 

have included the use of optically encoded droplet-microfluidics to enable HTS of 
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compound libraries across single cells 144. Collaboration between industry and tissue 

engineering academic groups should encourage the further development and adoption of 

these technologies by a wider community, bringing microfluidic devices, artificial 

extracellular matrices of tuneable stiffness and mixed cell culture models to a greater 

number of laboratories. 

 

Advanced microscopy and image analysis tools. An advantage of automated microscopic 

imaging over other HTS platforms is its provision of information on functional data points 

together with associated spatial information in x, y and z dimensions. This allows cell-

based screening assay formats to progress towards more complex, heterogeneous co-

culture and 3D models. Novel ex vivo cell models such as those previously described from 

solid tumour patients as well as whole-organism models used in drug testing, are often a 

source of heterogeneous cell types and present challenges for assay quantification. The 

heterogeneity, which characterizes these models and the original tissues that they 

represent, may drift as a consequence of cell culture conditions, and should be taken into 

account during assay development and analysis. The widely used whole-well 

measurements, based on standard luminescence, fluorescence, or other similar assays, do 

not reveal the heterogeneity in response to culture condition or drug exposure. Such 

assays also do not recognize or quantify sub-populations of cells carrying specific 

markers (e.g. an amplification of a cancer biomarker to inform patient stratification), 

which can be scored by high-content imaging, and other single-cell technologies.  

 

Microscopy technologies have progressed remarkably over the past few years. Advances 

in optics, robotics and computational techniques, as well as an expanding repertoire of 
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contrast markers, including functional live-cell reporters, are contributing to the 

widespread adoption of image-based screening platforms that provide highly dynamic and 

quantitative fluorescence readouts in cell-based assay systems 145-147. Non-invasive label-

free imaging techniques have recently emerged fulfilling the requirements of minimal cell 

manipulation for cell-based assays in a high-content screening context. Among these label 

free techniques, digital holographic microscopy (DHM) provides quantitative information 

that is automated for end-point and time-lapse imaging using 96- and 384-well plates 148-

150. Similarly, label-free optical techniques, such as phase contrast or differential 

interference contrast (DIC) can be digitally reconstructed and quantified 151. Light sheet 

fluorescence microscopy (LSFM) holds great promise for the analysis of large numbers of 

samples, in 3D high resolution and with fast recording speed, and minimal photo-induced 

cell damage. LSFM has gained increasing popularity in research areas such as 

neurosciences, plant and developmental biology, toxicology and drug discovery, although 

not yet adapted to an automated screening setting 127,152,153. Currently, the majority of 3D 

image analysis software is applied to single images or in a semi-automated low-

throughput manner using predominantly custom solutions because no community-wide 

accepted tools exist 154,155. Image-based multi-parametric phenotypic profiling, including 

morphology, topology, and texture parameters such as wavelet and image moments, have 

begun to address the challenges of automated segmentation and mathematical descriptor 

extraction for 3D cell profiling 155,156.  

 

Optimizing bioinformatics solutions and phenotypic analysis towards systems 

pharmacology. Developments in microscopic imaging provide a strong example of the 

impact of new technologies on functional biology and cellular pharmacology studies. 
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Rapid and transformative advances in other technology areas, including proteomic, 

lipidomic, transcriptomic, epigenetic and mass spectrometry imaging technologies, all 

support a move away from reductionist approaches in drug discovery to a more holistic 

“systems pharmacology” approach. Systems pharmacology describes a broader view of 

drug activity whereby targets are considered as part of integrated biological networks and 

where phenotypic response is linked with genotype and epigenetic considerations, 

supporting more in-depth understating of drug mechanism-of-action and potential 

personalized healthcare strategies 157. The CANScript technology was recently developed 

to combine ex vivo phenotypic responses of heterogeneous patient-derived tumour tissues 

with next-generation proteomics and genomic data, to predict clinical outcomes 158. 

Following integration of experimental ex vivo data with genomic, proteomic and clinical 

data, machine learning was utilized to predict the clinical outcomes of chemotherapy in 

head and neck squamous cell carcinoma and colorectal cancer patients 158. Further 

development of such “integrative” bioinformatics tools, combining clinical expression or 

mutation status of specific targets with cellular networks, chemical tools and preclinical 

activity, is exemplified by the CanSAR knowledge base, which enables evaluation of 

target biology, drug mechanism-of-action and patient stratification hypothesis within the 

context of pathway networks and integrated biological systems 159,160.	  	  

	  

While such bespoke bioinformatics solutions demonstrate promise, a major challenge to 

exploiting new functional genomic, proteomic and phenomic technologies is how to 

integrate large orthogonal datasets in a robust manner to accurately inform the drug 

discovery process and predict viable clinical development strategies 161. New advances in 

network biology and graph theory offer approaches for such integration but require 
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further development and validation 162. A common weakness of current bioinformatics 

databases incorporating functional preclinical data is a lack of any standardization of 

phenotypic assay operation, data reporting and evaluation of the relevance of the 

phenotypic assay. Indeed, two recently reported large-scale pharmacogenomic studies in 

cancer cell lines have resulted in follow-up discussion and debate of the inconsistency 

between study results [Au:OK?] 163-165. This could be due to the lack of standardization in 

experimental assay design, execution and data analysis. However, high correlation for 

both drug testing and the genomic data could be achieved if common standards for 

experimental assays and bioinformatics methods are used 166. These examples further 

highlight the need for new, better-defined and more robust screening assays through the 

establishment of strict standard operating and bioinformatics data analytics procedures, 

allowing statistical comparisons and validations across laboratories 167. Further 

investment in preclinical assay development, standardization of compound profiling, 

screening formats and quality control over phenotypic analysis will be required to fully 

exploit the potential of new integrative drug discovery bioinformatics tools and the 

systems pharmacology approach. 

 

Principles of disease-relevant assays  

Although important progress has been made in developing more physiologically relevant 

and predictive cell-based assays, as described above [Au:OK?], many key aspects of 

these technologies must be improved to promote adoption, with the ultimate aim to reduce 

clinical attrition rates. Key considerations include:  

 

• Regular DNA fingerprinting and karyotyping of cell cultures, to confirm their 
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origin and genomic integrity, hence facilitating accurate disease modelling and robust 

pharmacogenomic analysis and biomarker discovery. Additionally, deep genotyping and 

phenotyping of the patients and the healthy volunteers from which primary cell and iPSC 

models are derived will help us to understand phenomena such as cell heterogeneity and 

drug resistance and how in vitro culture conditions influence representation of disease. 

These efforts could be supported, for example, by the generation/utilization of biobanks 

of well-annotated patient derived cells, ensuring improved characterisation of genomic 

attributes of these disease models. Such approaches should also help us to understand the 

contribution of clonal variation within models by monitoring, quantifying and 

compartmentalizing cell heterogeneity, leading to a better understanding of the underlying 

causes of attrition resulting from patient heterogeneity and variation in efficacy and 

toxicity across diverse human populations. In-depth molecular characterization of patient 

samples and derived cell models at genetic and post-translational pathway levels would 

support reverse engineering of assays that recapitulate clinical drug resistance 

mechanisms. Such detailed characterization of cell models may also partly address the 

lack of reproducibility across laboratories, which may be due to genomic variation. 

 

• Identification of reproducible protocols for the generation and differentiation of 

consistent somatic cell phenotypes to facilitate the expansion of primary cell and iPSC 

models for candidate drug profiling and HTS. Such developments will enable evaluation 

of new target biology and drug mechanism of action across multiple diseases, patient 

cohorts and healthy donor samples. It will also help identify issues arising from poor 

experimental reproducibility and therefore better understand pharmacogenomic effects 

that maybe inherent in these systems. Additionally, it should be ensured that the cell 
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models used in such studies represent the appropriate maturity (e.g. embryonic or adult 

characteristics) for the expected age of the patient, therefore providing a more accurate 

disease model. 

 

• Ensuring that the environmental (macro and micro) conditions of in vitro 

models are appropriately tailored to represent tissue types, disease pathophysiology and 

disease aetiology. This will involve the accurate modelling of the nutrient and metabolite 

concentrations, pH and dissolved gases. Special attention should also be focused on the 

mechanical conditions in which cells and tissues are propagated. These include ECM 

constituents specifically those that contribute to the stiffness of growth substrates, the 

interaction of cellular adhesion molecules, mechanical deformation and shear forces. 

Also, many culture systems will require the controlled introduction of defined and 

relevant disease-causing environmental and physiological perturbagens to develop more 

accurate models of disease progression [Au:OK?]. 

 

• Developing multiscale tissue assays to mimic organism level physiology to 

accurately model drug metabolism, co-morbidities and systemic paracrine effects. 

 

• Incorporating clinically equivalent dosing strategies, which mimic known or 

predict expected in vivo pharmacokinetic properties of various therapeutic modalities. 

 

• Derivation of iPSCs from multiple patients and tissue types, containing multiple 

diverse genomic alterations, in order to reflect broader patient populations and more 

common disorders [Au:OK?] . 
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•  Comparison of the drug–response data between patients and patient-derived cell 

models to evaluate the predictive value of the model. 

 

•  Integration of molecular genetic, epigenetic and proteomic data sets with robust 

phenotypic measurements in both clinical and preclinical settings with computational 

bioinformatics, supporting multiparametric validation of drug targets and assay relevance 

through a less-reductionist “systems pharmacology” approach. 

 

• Adoption of a human physiology assay checklist, based on unbiased evaluation of 

which assay conditions accurately recapitulate the human tissue physiology or 

pathophysiology under study, and the limitations that each assay will inevitably have with 

regards to recapitulating the full complexity of human disease. 

 

• Definition of the relevant assay endpoint. In diseases where the underlying causes 

are multifactorial it will in many cases be challenging to isolate the relevant endpoint(s) 

from in vitro cell and tissue-based assay systems. For example, in neurodegenerative 

diseases that are associated with plaque formation, it is currently a matter of debate as to 

whether the current readouts (the inclusions) represent a mechanism of protection or if 

they are a pathological endpoint leading to irreversible damage. Similarly, in type 1 

diabetes, it is unclear whether assays measuring the insulin production/release or 

degradation of granules should be utilized to guide new therapies focused towards 

stimulating the production and release of insulin or whether the degradation of old insulin 

secretion granules should be prioritised in order to allow newly synthesised granules to 
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fuse with the plasma membrane. Thus as previously discussed by others 168 the selection 

of relevant endpoints, which translate into clinical phenotypes or biomarkers of disease 

outcome may be most beneficial.	  

 

With the considerations above in mind, in Table 1, we provide our proposal for a set of 

“defining principles of disease-relevant assays” and justify their potential impact upon 

drug discovery. While many principles are generic and can be applied across disease 

models, certain principles have disease specific considerations, which require more in-

depth investigation and modelling as indicated in Table 1. We anticipate that no single 

model or assay will be perfect and many of them will fail to recapitulate the full 

complexity of the human disease conditions, which they intend to represent. However, we 

believe that careful consideration of the limitations of each assay and the defining 

principles outlined in Table 1, will lead to more critical evaluation of the predictive value 

of every cell based assay, and to more cautious and appropriate interpretations of the 

results derived from these assays.  

 

The defining principles are also intended to encourage further discussion and debate of 

preclinical assay screening standards and their clinical relevance; to help drive forward 

the field of preclinical assay development towards improved clinical success rates. We 

anticipate that broad communication of such principles across diverse scientific 

disciplines will both stimulate and guide further investment in innovative solutions and 

new enabling technologies which address the challenges. In Figure 3, we highlight how 

integration of the technologies discussed above could contribute in early-stage drug 

discovery [Au:OK?] . 
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Assay validation and backward translation 

Validating new preclinical models for physiological and disease relevance is not trivial, 

and arguably the best validation is evidence of prediction of clinical efficacy or toxicity. 

The majority of new cellular assay technologies described in this article have not yet 

reached a level of maturity that would permit any clear conclusions regarding their 

predictive value. Currently, the adoption of new technologies often depends on an organic 

rise in utilisation and acceptance. However, rather than simply waiting for a sufficiently 

large body of evidence to be generated by pioneering drug discovery efforts, a concerted 

effort to compare the predictive power of new cell-based models for outcome in patients 

is needed. Such efforts would ideally involve the testing of collections of known 

molecules that have demonstrable clinical efficacies and toxicities to support backward 

translation to determine the predictive value of in vitro models. Backward translation 

studies may also encompass reverse engineering of in vitro model systems to predict past 

clinical trial failures through recapitulating known mechanisms of drug resistance or 

relapse observed in the clinic.  

 

Recent examples of such work have been focused on evolving hepatotoxicity assays 

utilizing, primary hepatocytes, stem-cell derived hepatocytes and hepatocyte cell lines 

cultures grown on a range of defined organic or synthetic matrix substrates. These 

systems were then tested against a panel of drugs to predict agents that result in drug-

induced liver injury in humans 169-171. Similar approaches using stem-cell-derived 

cardiomyocytes to predict cardiotoxicity are also under development, as previously 

discussed.  
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Examples of backward translation studies to predict clinical efficacy of therapeutic agents 

are rare, which is probably a reflection of the lack of research funding available to support 

backward translation studies and assay model development. However, to demonstrate the 

predictive and translational potential of new preclinical models described in this review 

we highlight two case studies: the Hedgehog signalling inhibitor vismodegib and an αvβ6 

blocking antibody (264RAD). Both of these examples exploit the unique aspects of the 

3D organotypic pancreatic cancer model previously described, which is composed of a 

co-culture of established pancreatic cancer cells cultured on dense collagen matrix 

contracted by fibroblasts 130,172. This model recapitulates in vivo pharmacology issues 

relating to poor drug penetration and inadequate clinical efficacy 131,132.  

 

In the first example, studies that used both the in vitro organotypic cell culture model and 

comparative in vivo transgenic models showed that cyclopamine, which targets Hedgehog 

signalling in the stromal cell compartment, leads to increased penetration and hence 

activity of the anticancer drugs dasatinib and gemcitabine in pancreatic cancer [Au:OK?] 

128,132. Clinical trials of the approved Hedgehog signalling inhibitor vismodegib have been 

instigated in pancreatic cancer and recent publication of early results indicate an improved 

efficacy response 173 [Au:OK?] . In the second example, pioneering studies 

demonstrating that targeting αvβ6 suppressed cancer cell invasion in 3D organotypic 

assay formats 174,175 have contributed to the progression of the novel αvβ6 blocking 

antibody therapy (264RAD) into a phase 1 trial in pancreatic cancer: 

(http://bci.qmul.ac.uk/news/general-news/item/264rad-antibody-bci-medimmune-cruk-

trials). 
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Finally, a recent article published by Scannell and Bosley provides further justification for 

increased investment in backward translation studies 176. This work, which describes a 

quantitative decision-theoretic model of declining R&D productivity, illustrates how 

small improvements in the positive predictive value (PPV) of preclinical assays can 

outperform the documented advances in assay automation and throughput with regard to 

improving R&D productivity as defined by the successful translation of drug discovery to 

positive clinical outcomes 176. Thus, a clearly defined pathway to assay validation and a 

subsequent development of a repository of assays with known positive and negative 

predictive values (PPV and NPV) would be of significant value. As far as we are aware 

there is no unifying systematic approach to measuring and recording the clinical impact of 

established assays or new assay technologies and approaches. We suggest that a routine 

evaluation by measurement of PPV or NPV of all assays used in drug discovery would 

provide a valuable resource to the translational research community.	  

 

The need for funding and consortia 

Academic-industrial partnerships have existed in some form since the birth of the 

pharmaceutical industry over 100 years ago, but have increasingly appreciated and 

pursued more recently in a wide range of contexts, from identifying and validating novel 

therapeutic targets through to addressing drug development challenges that are too broad 

for any one organization to tackle effectively alone, often through consortia [Au:OK?]. 

There remains, however, a gap in the development of such consortia in the area of 

preclinical model development, and here we put forward three proposals to address this 

[Au:OK?] .  
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First, we propose that direct funding for the development of preclinical models and assay-

screening technologies with improved clinical relevance is an aspect of the drug 

development process that can be most effectively addressed by academic-industrial 

partnerships. Although target-based drug discovery is directly supported through 

academic-industrial partnerships such as Bayer’s Grants4Targets; GlaxoSmithKline 

discovery partnerships with academia (DPAc scheme) and the IMI European Lead 

Factory consortium (see Further information), the general strategy by drug discovery 

groups within both industry and academia, at present, is to “tap into” academic groups 

that have developed more relevant assays for their own research and apply them to 

existing drug discovery programs. Such academic assay systems and models have 

typically not been developed for the purpose of screening or guiding clinical decision 

making and thus remain to be validated for robustness, reproducibility and clinical 

predictivity 177. We therefore feel that translational funding schemes and pre-competitive 

research consortia must be significantly expanded and re-balanced from hypothesis-

driven, target-directed research to support the development of new preclinical models and 

assay-screening technologies that can provide improved prediction of clinical outcomes. 

 

Secondly, we propose that biobanking should be encouraged and developed [Au:OK?] . 

The initiating step in moving towards more clinically relevant primary human assays to 

support experimental medicine and personalized treatment paradigms is a standardized 

flow of high-quality samples from the clinic to the research bench. Such samples require 

relevant and anonymized clinical information, complete pathology reports and timelines 

from surgery for optimal integration with molecular profile data.  Currently, the sample 
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flow is often initiated through disease-specific research projects where ethics boards 

provide permission for patients sampling. However, in the long term, biobanking 

operations with a single consenting procedure provide a much more viable solution. The 

development of drug testing pipelines for human cell-based or ex vivo samples must at 

least aim to achieve diagnostic grade assays with quality standards in place, to enable 

relative ease of routine procedures and to be scalable in terms of maximizing both sample 

amounts and screening capacity. Such translational efforts are often nation-centric with 

the limitations of national laws, which unfortunately confound larger cohort studies and 

contribute to duplication of efforts with limited standardization. 

 

Third, we propose that international collaboration and consortia to derive primary human 

cell biobanks with relevant annotation and standard operating procedures will promote a 

step-change in the derivation and use of primary human cell assays to support drug 

discovery, experimental medicine, drug repositioning and personalized healthcare studies. 

A recent consortia composed of academic and industrial partners led by the Structural 

Genomics Consortium entitled, ULTRA-DD (Unrestricted Leveraging of Targets for 

Research Advancement and Drug Discovery) is beginning to address this issue by 

providing opensource access to high quality chemical probes and resource for exploring 

target biology in patient derived models177 (see Further Information). However, further 

investment in the development and validation of the most disease relevant assay model 

systems is required to support and expand these activities across drug discovery programs.  

Quality control, standardized procedures, standardized data analysis and validation of 

assay results across reference laboratories will be critical to the efficient development and 

acceptance of such assays, by driving improved data reproducibility and greater general 



	  

39	  
	  

confidence in promising early translational research results. Collaboration between 

dedicated assay development and assay screening groups together with clinicians, 

biostatisticians, computer scientists and IT experts adequately supported from industrial, 

academic, government and charitable funding sources are necessary to address the 

challenges (Figure 4).  

 

Conclusion 

The emergence of new cell-based assay technologies will be important in enhancing 

conventional target-directed drug discovery (TDD) by supporting more robust target 

identification and validation and secondary screening assay cascades. Such advances are 

also well placed to support a new era of phenotypic drug discovery (PDD) (Box 3). 

However, to reach their full potential, there must be an acknowledgement of the value of 

functional biology and physiological-based assay systems in drug discovery and the need 

to further develop more predictive in vitro models, and new assay screening approaches 

towards greater clinical relevance. We propose that consideration of physiological 

relevance and the defining principles of disease-relevant assays proposed in this article 

should be the starting point of any cell-based assay development. Adhering to these 

principles may lead to increased research costs, but in our view, the benefit justifies the 

increased investment and effort. As a translational research community, we should drive 

the field towards greater disease relevance in drug development and call for funding 

bodies to support more advanced cell assay development and robust hypothesis-

generating translational research as standalone grants. The current focus on reductionist 

hypothesis-driven research combined with the lack of robust disease-relevant preclinical 

models to evaluate targets, novel drug candidates and to predict clinical outcomes is 
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clearly hindering advancement.  Our hope is that the principles laid out in this article 

should function as a signpost for greater investment in the development and uptake of 

advanced preclinical disease modelling technologies and infrastructures. It is our view 

that such investment will complement the existing investments in academic and industrial 

drug discovery and substantially increase the likelihood of success for drug discovery and 

experimental medicine projects. 
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Box 1 | Development of improved models of infectious diseases [Au:OK?]  

Pathogen biology and infectious disease operate on multiple cellular and tissue scales, 

wherein the biology of the infectious microbe and its target cell depend upon the 

contextual interplay of pathogen development stages with distinct host tissues, organs, 

and the immune response. One important example of this complexity is the lifecycle of 

Plasmodium falciparum, the parasite that causes malaria in humans. There are several 

possible strategies to screen for lead compounds using phenotypic approaches, including 

screening at the human liver-, blood cell- or the insect- stage of the parasite life cycle. The 

use of cell-based phenotypic assays is offering promise in the identification of novel 

therapeutic classes that target multiple stages of the parasite’s development 178. 

However, the nature of the targeted cells and the virulence of an infectious agent are 

intimately linked, and can sometimes only be appropriately recapitulated by very specific 

host-pathogen combinations. Along these lines, a series of studies to identify new 
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chemical entities active against Leishmania subspecies, the causal agents of human 

leishmaniasis, clearly demonstrated that developing an assay targeting the insect 

promastigote stage of the parasite does not yield viable lead compounds 179-181. Instead, a 

primary macrophage assay supporting infection competent (replicative) parasites requires 

a much longer and more sophisticated methodology, reducing screening throughput, but 

greatly enhancing the quality of results and identification of viable lead compounds 179-181. 

 

A major concern in the field of infectious disease modelling is the use of perpetually 

cultured laboratory strains of infectious disease organisms despite their poor resemblance 

to “real-world” pathogens. Bacterial growth conditions in vitro differ fundamentally from 

the conditions found in natural ecosystems, including infection sites. Indeed, as a result of 

the high degree of plasticity of their genome, bacterial strains adapt quickly to the 

optimized laboratory mono-culture conditions and, therefore, rapidly lose key 

pathophysiological characteristics 182. In the late 19th century, Louis Pasteur had already 

recognized that laboratory adaptation of bacteria is associated with attenuation of 

virulence towards the host species and this idea was exploited by his colleagues Calmette 

and Guérin, leading to the development of the BCG vaccine in 1921 183.  

 

It is now well established that bacteria do not exist in isolation but rather live as 

communities, behaving collectively to adapt to new host environments and modes of 

growth 184. Quorum-sensing (QS), i.e. cell-to-cell communication by production and 

release of autoinducers in the environment, plays a key role in Pseudomonas aeruginosa 

pathogenicity. The large variation of expression of QS-genes observed upon culture in 

different environments emphasizes the pertinence of clearly identifying and mimicking 
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the actual habitat that bacteria encounter in vivo when developing an assay to design new 

therapies 185. Along these lines, most bacterial chronic infectious diseases are associated 

with the formation of polymicrobial biofilms. Biofilms protect the bacteria from the host 

innate- and adaptive- immune response and represent an ideal setting for horizontal gene 

transfer (HGT), thus creating new virulent strains and resistance by way of creating a 

communal distributed “supra-genome” 186. 

  

A way to develop more physiological infectious disease models is to mimic as closely as 

possible the in vivo ecosystems that the pathogens might encounter in an infected host, in 

order to recreate the microenvironments required for the virulence and eventually to 

identify drugs that might boost the host defence mechanisms [Au:OK?] . Many 

pathogens that infect humans [Au:OK?] have been studied in model animals such as D. 

melanogaster, C. elegans, zebrafish or mice; unfortunately, not all of them are easily 

amenable to higher-throughput drug screening, or properly model the human response to 

pathogen infection. Nonetheless, in an elegant study, Kim and co-workers describe how 

host-cell autophagy activated by antibiotics is required for effective anti-mycobacterial 

drug response through conserved mechanisms between fly and mammal 187. While small 

model organisms hold many promises for infectious diseases drug discovery, they still 

have many drawbacks such as their temperature, discrepancies between the anaerobic 

nature of the human intestine and non-conserved host targets across species. These 

shortcomings might be overcome by using synthetic micro-tissues such as the human gut-

on-a-chip 188 or small airway-on-a-chip microfluidic devices 189.  
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Many pathogens require high biosafety level laboratory confinement (BSL3 and above) 

presenting several challenges to developing assays under these conditions. The continued 

development of automated liquid handling and automated microscopy platforms, which 

enable remote control, including image acquisition and analysis help support assay 

development and screening under high level biosafety restrictions. The lack of effective 

cure, or preventive measures against, emerging antibiotic-resistant bacteria and re-

emerging viral pandemics (e.g. Ebola, Marburg and Zika) calls for renewed efforts to 

innovate technologies and methodologies for drug screening in the infectious disease area. 

Comparative phenotypic screening across microbial resistant sub-species combined with 

relevant host systems may guide drug discovery toward novel therapeutic classes 

targeting infectious disease resistance mechanisms and new host-oriented therapies 190,191. 

 

 

Box 2 | 2D versus 3D cell biology 

Cellular growth in 2D versus 3D in vitro culture models differ in critical environmental 

factors. First, the mechanical factors differ; cells grown in 2D cultures are subject to 

stiffer (i.e. less compliant mechanical conditions) than those grown in 3D cultures, which 

resemble better mechanical forces exerted to cells in vivo. Second, the biochemical 

environment differs; access to nutrients, oxygen, ions, gradients and drugs are critical 

within tissues in vivo and are clearly distinct between 2D and 3D culture models,.. Third, 

the environmental context differs, as physiological cell-cell and cell-extracellular matrix 

interactions are severely compromised in most 2D cultures. These factors can influence 

intracellular signal transduction pathways leading to differential gene expression patterns, 

with important implications in the polarization and differentiation status of cells 192-194. 
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Accordingly, screening run in parallel in 2D and 3D assays have led to different results 

193. 

 

As reviewed in 195-204, there are multiple static and microfluidic systems that facilitate the 

development of new 3D in vitro models of disease (Figure 2). A wide range of 

biomaterial scaffolds for improving physiological relevance of in vitro assays are 

increasingly being adopted using different natural and synthetic materials in 3D or 2D cell 

culture models, and for bioprinted organotypic tissue and organs 197,202,205. Scaffold-based 

3D cultures can be generated by seeding cells on an acellular 3D matrix or by dispersing 

cells in a liquid matrix followed by solidification or polymerization.  

 

The most common scaffolds used fall into two broad categories. The first is biologically 

derived materials or natural hydrogels that commonly include, but are not limited to, 

collagen, fibrin, hyaluronic acid, Matrigel, and derivatives of natural materials such as 

chitosan, alginate and silk fibres 206. The second category is synthetically derived 

matrices, including polyvinyl alcohol (PVA), polylactide-co-glycolide (PLG), 

polycaprolactone (PLA) Polyethylene glycol (PEG) hydrogels, which offer more 

flexibility for tuning chemical composition and mechanical properties since they can be 

selected or tuned to be hydrolysable or biodegradable 206,207.  

 

To enrich their potential as “bioactive” materials, those scaffolds are generally 

supplemented with ECM proteins 122, active peptide sequences 208,209 or nucleic acid 

aptamers 210. Magnetic nanoparticles such as magnetite (Fe3O4) 211 are used to create 

magnetic hydrogels, which allow for greater control of the swelling and collapsing 
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properties of the hydrogels using an external magnetic field 212. These 3D systems reflect 

better the in vivo scenario, allowing for example, epithelial morphogenetic processes, 

including formation of tubules and cysts and modelling epithelial acini (reminiscent of 

those found in lung alveolae, mammary and salivary glands and in pancreatic and kidney 

cysts), which in many instances have been reported to be functional 27,213,214. Thus, 

different 3D assays are considered to bridge the gap between 2D cultured cells and in vivo 

models. 

 

Box 3 | Phenotypic drug discovery versus target-directed drug discovery 

Target-directed drug discovery (TDD) has been the predominant strategy of the 

pharmaceutical and biotechnology industry for the past 25 years. It is characterized by the 

identification and optimization of compounds that modulate a pre-nominated target 

implicated in disease progression, often using high-throughput screening to identify initial 

hits. Phenotypic drug discovery (PDD) has been defined as the generation of hit or lead 

molecules without any prior knowledge of the target. Such compounds are typically 

identified and developed through empirical testing in physiological in vivo models or 

from cell-based phenotypic screening assays.  

 

An initial retrospective analysis of all drugs approved by the US Food and Drug 

Administration (FDA) between 1999-2008 indicated that of first-in-class small molecule 

medicines approved, 37% (28 drugs) were initially identified by a PDD approach, relative 

to 23% (17 drugs) identified by TDD 215. Follow-up retrospective studies in cancer 216 and 

across disease areas 217, produced different results, in part owing to differences in the 

definition of phenotypic screening and in part owing to differences in the time period 
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studied, with TDD showing substantial success in cancer in more recent years [Au:OK?]. 

In cancer, 31 novel small-molecule [Au:OK?] drugs approved by the FDA between 

1999-2013 were discovered by TDD (including 21 kinase inhibitors), whereas 17 novel 

small-molecule [Au:OK?] drugs approved during the same period were discovered by 

PDD (including a single kinase inhibitor, trametinib targeting MEK) 216. Retrospective 

analysis by Eder and colleagues 217 across all disease areas, using a refined selection 

criteria, identified 45 novel small molecules approved during 1999-2013, discovered 

through TDD. At the same time, 33 approved small molecules were discovered by non-

target directed methods, including 8 through unbiased phenotypic screening of large 

chemical libraries and 25 through chemocentric approaches, representing a combination 

of rational drug design and phenotypic screening/validation. These studies indicate that 

PDD and TDD provide complementary approaches. Further investment in more predictive 

cell-based assay systems could advance both PDD and TDD strategies, ultimately 

resulting in improved clinical success rates. 

	  

Further information 

Bayer’s Grants4Targets. https://grants4targets.bayer.com/ 

GlaxoSmithKline discovery partnerships with academia (DPAc scheme). 

http://www.dpac.gsk.com/  

IMI European Lead Factory consortium. https://www.europeanleadfactory.eu/ 

ULTRA-DD (Unrestricted Leveraging of Targets for Research Advancement and Drug 

Discovery) http://www.ultra-dd.org/ 
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Figure 1 | Novel assay technologies and their integration. Advances in patient-derived 

primary cell models; iPSC technology; 3D ex-vivo and multicellular models, microfluidic 

devices; CRISPR-cas9 gene-editing; automated imaging and image analysis platforms; 

molecular cell profiling technologies, including advanced proteomic and genomic 

methodology such as next-generation sequencing and bioinformatics, individually and 

together present new opportunities for incorporating more relevant physiological models 

into drug discovery. 

 

Figure 2 | Evolution of more physiologically relevant cell-culture assay systems. In 

contrast to traditional two-dimensional (2D) cultures of cells as monolayers on flat 

surfaces, three dimensional (3D) assays allow cells to grow forming more complex 3D 

structures, which reflect better the physiological architecture of tissues and organs in vivo. 

Several new technology developments and culture methods have enabled the design of 

more consistent and informative 2D and 3D cell culture assays, which can be tailored to 

address specific biological and clinical questions (Box 2). Specific developments 

illustrated here include; A. Synthetic nanofibre, hydrogel and polymer scaffolds for 3D 

Culture http://www.elmarco.com/gallery/nanofibers/ 209,218-221; B. Spheroid and 

microtissue assays 222; C. 3D organic matrix assays 223; D. Multicellular organotypic 

assays 130,172; E. Ex vivo tissue assays 224 as an example human ovarian cancer cells 

cultured on fresh human omentum tissue is shown (Carragher unpublished). F. 

Microfuidic and organ on-a-chip devices incorporating 3D cell culture substrates, defined 

mechanical stimuli and controlled perfusion with nutrient media 225-228. Comparative 

models of increasing complexity and physiological relevance, while not always suitable 

for primary screening may also serve well positioned further down the cascade as 
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secondary assays or target validation tools to provide increased confidence in the 

translational potential of novel lead compounds and new target hypothesis. 

 

Figure 3 | New cell-based assay technology contributions to early-stage drug 

discovery pipeline. We outline where the application of new emerging cell-based assay 

technologies can enhance the quality and clinical relevance of data derived from cell 

based models. Adoption of more robust, informative and relevant assays early within the 

drug discovery process will support more informed decision making on which 

opportunities to progress into preclinical development. Frontloading attrition earlier (Fast 

to fail) in the drug discovery process will reduce the substantial costs associated with late 

stage attrition due to poor efficacy and toxicity and contribute to the development of 

improved treatments for the most challenging diseases. 

 

Figure 4 | Precompetitive consortia facilitating predictive assay development, 

experimental and personalized medicine strategies. The development of screening 

assays and preclinical models, which better predict clinical outcomes is a significant 

challenge, which has not received the necessary investment from translational funding 

bodies and industry. We present a model for the pre-competitive development of more 

predictive and reproducible cell-based assays though academic and industrial consortia. 

Facilitated by the access to human cell and tissue biobanks, we propose a network of core 

cell based screening laboratories, proficient in assay quality control and automated cell 

based screening technology, to develop assays to common standards. New assays will be 

qualified for disease relevance in partnership with disease area experts and clinicians 

performing retrospective studies with approved drugs and failed clinical candidates, 
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where possible, to determine the positive and negative predictive value of each assay. 

Assay protocols and assay results relating to identification of new targets, lead 

compounds and repositioning opportunities will be validated for reproducibility by 

benchmarking assay performance and confirming results between distinct core 

laboratories within assay development networks. We believe that academic, industrial and 

government funding of such pre-competitive activity will provide open source access to 

high quality assays and results to be exploited by the academic and healthcare 

communities and the biopharmaceutical industry. These activities will drive significant 

improvements in the quality of the academic literature publishing new target hypothesis 

and new drug combination and repositioning opportunities. Such pre-competitive activity 

will also improve the quality of assays used by academic and industrial groups for 

screening internal chemical and biologic libraries. Follow up studies on promising leads 

or drug candidates could be performed on larger cohorts of patient derived cell models 

through the consortia and/or access to the academic network of core laboratories. 
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Inorganic synthetic matrix cell culture scaffolds 
(Nanofibres/hydrogels/polymers) 
• Improved physiological relevance over plastic or glass substrates but 

limited  functionality and relevant ECM-cell communication relative to 
organic ECM.

• Cost-effective and commercial supplies amenable to standard 
96/384-well formats supports high throughput application and adoption 
across laboratories.

3D microtissues/multicellular spheroid models 
• Improved physiological relevance over 2D mono-culture assays.
• Many 96/384-well assay formats amenable for high-throughput/

high content screening.
• Commercial supply of standard plate-based consumables and reagents 

supports adoption across laboratories.

3D organic matrix (for example, Collagen, Matrigel) cell assays 
• Improved physiological relevance over standard 2D and synthetic 

substrates especially.
• If appropriate cocktails and native structure of ECM constituents 

considered.
• Amenable to standard 96/384-well assay formats and commercial supply 

supports adoption across many laboratories. However high costs and 
batch-to-batch variability limits high throughput application.

Multicellular organotypic and air–liquid interface assays
• High physiological relevance when using appropriate cell types and 

organic ECM preparations.
• Current formats are not suitable for high-throughput screening.
• Established protocols widely published, however, complex assay set up 

and lack of commercial supplies limit wide spread adoption.

Ex-vivo tissue culture assays
• High physiological relevance when using freshly isolated human tissue 

samples and appropriate assay endpoints.
• Primary-derived tissue formats are not readily amenable to scale up for 

high-throughput screening.
• Limited supplies of fresh human tissue, short life span of tissue viability 

and complex analysis of assay endpoints limit widespread adoption.

Organ-on-a-chip and microfluidic assay systems
• High physiological relevance when using appropriate combinations of 

multiple cell types, tissues, matrix substrates, mechanical stimuli and 
perfusion/excretion of nutrients.

• The most relevant formats are currently restricted to low-throughput 
applications and not compatible with standard automation and assay 
screening platforms, limiting adoption across laboratories.

Throughput/adoption

Physiological relevance
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• Series of genetically defined/edited 2D 
and 3D cell-based assays representing 
multiple levels of physiological relevance 
for target identification and validation

• Focus upon primary human assays 
derived from hospital-based assay 
development groups

• Assays validated across laboratories for 
reproducibility and clinical relevance

• Rapid and robust screening and mechanism-
of-action profiling in relevant model systems

• Derivation of quantitative endpoints to direct 
SAR and chemical design towards enhanced 
efficacy

• Include multiparametric readouts and counter 
screening assays to elucidate drug MOA and 
avoid pan-assay Interference compounds and 
activity cliffs

Human cell resources:
• Genetically sequenced primary 

cell, organoid and iPSC biobanks
• Frontload systems medicine prior 

to candidate drug nomination
• Define stratification biomarkers 

for patient selection strategies 
and appropriate in vivo model 
testing

High-throughput screening of: 3D, multicellular, primary 
human and iPSC  models at scale suitable for large 
chemical library and genome-wide screening
• Microfuidic/miniturized screening formats
• Defined media/substrata
• Novel 3D/multicellular assays with standardized analysis

Utilize new assays of predictive toxicity, 
tissue perfusion and biodistribution
• 3D microtissues
• Organotypics
• Bioreactors
• Organ-on-a-chip

Target selection Hit identification Lead identification Lead optimization Preclinical candidate
nomination
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Standardized collection of fresh
tissue biopsies for assay development

Fresh human tissue biobank dedicated 
to development of a comprehensive 
quality controlled primary human cell 
assay resource across healthy 
volunteer and patient cohorts

Open-source 
qualified/validated
assays and results 
(reproduced 
between assay 
development labs)

Large cohort 
studies: 
biomarker and 
personalized 
medicine 
strategies

• Academic 
community

• Clinicians/
healthcare industry

Pre-competitive
access to assays

and data

Assay development lab 1

Pre-competitive assay development
and validation network

Assay development lab 2

Assay development lab 3

Assay development lab 4

Anonymized clinical-pathology
reports linked to sequencing data
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