545 research outputs found

    Deciphering interplay between Salmonella invasion effectors

    Get PDF
    Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction

    The Salmonella Mutagenicity Assay: The Stethoscope of Genetic Toxicology for the 21st Century

    Get PDF
    Objectives: According to the 2007 National Research Council report Toxicology for the Twenty-First Century, modern methods (e.g., "omics," in vitro assays, high-throughput testing, computational methods) will lead to the emergence of a new approach to toxicology. The Salmonella mammalian microsome mutagenicity assay has been central to the field of genetic toxicology since the 1970s. Here we document the paradigm shifts engendered by the assay, the validation and applications of the assay, and how the assay is a model for future in vitro toxicology assays. Data sources: We searched PubMed, Scopus, and Web of Knowledge using key words relevant to the Salmonella assay and additional genotoxicity assays. Data extraction: We merged the citations, removing duplicates, and categorized the papers by year and topic. Data synthesis: The Salmonella assay led to two paradigm shifts: that some carcinogens were mutagens and that some environmental samples (e.g., air, water, soil, food, combustion emissions) were mutagenic. Although there are > 10,000 publications on the Salmonella assay, covering tens of thousands of agents, data on even more agents probably exist in unpublished form, largely as proprietary studies by industry. The Salmonella assay is a model for the development of 21st century in vitro toxicology assays in terms of the establishment of standard procedures, ability to test various agents, transferability across laboratories, validation and testing, and structure-activity analysis. Conclusions: Similar to a stethoscope as a first-line, inexpensive tool in medicine, the Salmonella assay can serve a similar, indispensable role in the foreseeable future of 21st century toxicology

    Referral patterns of children with poor growth in primary health care

    Get PDF
    Background. To promote early diagnosis and treatment of short stature, consensus meetings were held in the mid nineteen nineties in the Netherlands and the UK. This resulted in guidelines for referral. In this study we evaluate the referral pattern of short stature in primary health care using these guidelines, comparing it with cut-off values mentioned by the WHO. Methods. Three sets of referral rules were tested on the

    Underestimated Effect Sizes in GWAS: Fundamental Limitations of Single SNP Analysis for Dichotomous Phenotypes

    Get PDF
    Complex diseases are often highly heritable. However, for many complex traits only a small proportion of the heritability can be explained by observed genetic variants in traditional genome-wide association (GWA) studies. Moreover, for some of those traits few significant SNPs have been identified. Single SNP association methods test for association at a single SNP, ignoring the effect of other SNPs. We show using a simple multi-locus odds model of complex disease that moderate to large effect sizes of causal variants may be estimated as relatively small effect sizes in single SNP association testing. This underestimation effect is most severe for diseases influenced by numerous risk variants. We relate the underestimation effect to the concept of non-collapsibility found in the statistics literature. As described, continuous phenotypes generated with linear genetic models are not affected by this underestimation effect. Since many GWA studies apply single SNP analysis to dichotomous phenotypes, previously reported results potentially underestimate true effect sizes, thereby impeding identification of true effect SNPs. Therefore, when a multi-locus model of disease risk is assumed, a multi SNP analysis may be more appropriate

    Functional Analysis of the Cytoskeleton Protein MreB from Chlamydophila pneumoniae

    Get PDF
    In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Scripts of Sexual Desire and Danger in US and Dutch Teen Girl Magazines: A Cross-National Content Analysis

    Get PDF
    The aim of this comparative quantitative content analysis was to investigate how US and Dutch teen girl magazines cover sexual desire (i.e., sexual wanting, and pleasure) and sexual danger (i.e., sexual risk, and negative physical/health consequences of sex). Relying on the sexual scripts framework and Hofstede’s cultural dimension of masculinity/femininity, we examined (a) how the coverage varied for boys and girls, (b) how it differed between the United States and the Netherlands, and (c) how gender differences varied by country. The sample comprised 627 sex-related feature stories from all 2006–2008 issues of three US (i.e., Seventeen, CosmoGirl! United States edition, and Teen) and three Dutch teen girl magazines (i.e., Fancy, CosmoGirl! Netherlands edition, and Girlz!). Overall, sexual wanting occurred more frequently in the US magazines than in the Dutch magazines. In the US coverage, boys’ sexual wanting received more attention than girls’ sexual wanting, whereas in the Dutch coverage sexual wanting was depicted equally often for boys and girls. The depiction of sexual pleasure did not vary by gender in either country, but was generally more visible in the Dutch magazines than in the US magazines. Sexual risks and the negative consequences of sex were associated with girls more than with boys, and were primarily depicted in the US magazines rather than in the Dutch magazines

    Microviridae Goes Temperate: Microvirus-Related Proviruses Reside in the Genomes of Bacteroidetes

    Get PDF
    The Microviridae comprises icosahedral lytic viruses with circular single-stranded DNA genomes. The family is divided into two distinct groups based on genome characteristics and virion structure. Viruses infecting enterobacteria belong to the genus Microvirus, whereas those infecting obligate parasitic bacteria, such as Chlamydia, Spiroplasma and Bdellovibrio, are classified into a subfamily, the Gokushovirinae. Recent metagenomic studies suggest that members of the Microviridae might also play an important role in marine environments. In this study we present the identification and characterization of Microviridae-related prophages integrated in the genomes of species of the Bacteroidetes, a phylum not previously known to be associated with microviruses. Searches against metagenomic databases revealed the presence of highly similar sequences in the human gut. This is the first report indicating that viruses of the Microviridae lysogenize their hosts. Absence of associated integrase-coding genes and apparent recombination with dif-like sequences suggests that Bacteroidetes-associated microviruses are likely to rely on the cellular chromosome dimer resolution machinery. Phylogenetic analysis of the putative major capsid proteins places the identified proviruses into a group separate from the previously characterized microviruses and gokushoviruses, suggesting that the genetic diversity and host range of bacteriophages in the family Microviridae is wider than currently appreciated

    Targeting the Wolbachia Cell Division Protein FtsZ as a New Approach for Antifilarial Therapy

    Get PDF
    Filarial nematode parasites are responsible for a number of devastating diseases in humans and animals. These include lymphatic filariasis and onchocerciasis that afflict 150 million people in the tropics and threaten the health of over one billion. The parasites possess intracellular bacteria, Wolbachia, which are needed for worm survival. Clearance of these bacteria with certain antibiotics leads to parasite death. These findings have pioneered the approach of using antibiotics to treat and control filarial infections. In the present study, we have investigated the cell division process in Wolbachia for new drug target discovery. We have identified the essential cell division protein FtsZ, which has a GTPase activity, as an attractive Wolbachia drug target. We describe the molecular characterization and catalytic properties of the enzyme and demonstrate that the GTPase activity is inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. We also found that berberine was effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel antibiotic approach for controlling filarial infection

    Role of SPI-1 Secreted Effectors in Acute Bovine Response to Salmonella enterica Serovar Typhimurium: A Systems Biology Analysis Approach

    Get PDF
    Salmonella enterica Serovar Typhimurium (S. Typhimurium) causes enterocolitis with diarrhea and polymorphonuclear cell (PMN) influx into the intestinal mucosa in humans and calves. The Salmonella Type III Secretion System (T3SS) encoded at Pathogenicity Island I translocates Salmonella effector proteins SipA, SopA, SopB, SopD, and SopE2 into epithelial cells and is required for induction of diarrhea. These effector proteins act together to induce intestinal fluid secretion and transcription of C-X-C chemokines, recruiting PMNs to the infection site. While individual molecular interactions of the effectors with cultured host cells have been characterized, their combined role in intestinal fluid secretion and inflammation is less understood. We hypothesized that comparison of the bovine intestinal mucosal response to wild type Salmonella and a SipA, SopABDE2 effector mutant relative to uninfected bovine ileum would reveal heretofore unidentified diarrhea-associated host cellular pathways. To determine the coordinated effects of these virulence factors, a bovine ligated ileal loop model was used to measure responses to wild type S. Typhimurium (WT) and a ΔsipA, sopABDE2 mutant (MUT) across 12 hours of infection using a bovine microarray. Data were analyzed using standard microarray analysis and a dynamic Bayesian network modeling approach (DBN). Both analytical methods confirmed increased expression of immune response genes to Salmonella infection and novel gene expression. Gene expression changes mapped to 219 molecular interaction pathways and 1620 gene ontology groups. Bayesian network modeling identified effects of infection on several interrelated signaling pathways including MAPK, Phosphatidylinositol, mTOR, Calcium, Toll-like Receptor, CCR3, Wnt, TGF-β, and Regulation of Actin Cytoskeleton and Apoptosis that were used to model of host-pathogen interactions. Comparison of WT and MUT demonstrated significantly different patterns of host response at early time points of infection (15 minutes, 30 minutes and one hour) within phosphatidylinositol, CCR3, Wnt, and TGF-β signaling pathways and the regulation of actin cytoskeleton pathway
    corecore