273 research outputs found

    Changes in the radius of a nucleon in interaction with another nucleon

    Full text link
    We consider a two-nucleon system described by two different skyrmion models that provide attraction for the central NN potential. One of these models is based on the product ansatz and the other on dilaton coupling. Within these models we ask the question, To what degree does the nucleon swell or shrink when the internucleon separation distance is appropriate to attraction or repulsion? We find typically swelling of 3 to 4 percent for central attraction of some 40 to 50 MeV.Comment: Nine pages of plain TeX plus two uuencoded figure

    Photo-z optimization for measurements of the BAO radial direction

    Get PDF
    Baryon Acoustic Oscillations (BAO) in the radial direction offer a method to directly measure the Universe expansion history, and to set limits to space curvature when combined to the angular BAO signal. In addition to spectroscopic surveys, radial BAO might be measured from accurate enough photometric redshifts obtained with narrow-band filters. We explore the requirements for a photometric survey using Luminous Red Galaxies (LRG) to competitively measure the radial BAO signal and discuss the possible systematic errors of this approach. If LRG were a highly homogeneous population, we show that the photo-z accuracy would not substantially improve by increasing the number of filters beyond ∌10\sim 10, except for a small fraction of the sources detected at high signal-to-noise, and broad-band filters would suffice to achieve the target σz=0.003(1+z)\sigma_z = 0.003 (1+z) for measuring radial BAO. Using the LRG spectra obtained from SDSS, we find that the spectral variability of LRG substantially worsens the achievable photometric redshift errors, and that the optimal system consists of ∌\sim 30 filters of width Δλ/λ∌0.02\Delta \lambda / \lambda \sim 0.02. A S/N>20S/N > 20 is generally necessary at the filters on the red side of the HαH\alpha break to reach the target photometric accuracy. We estimate that a 5-year survey in a dedicated telescope with etendue in excess of 60 m2deg2{\rm m}^2 {\rm deg}^2 would be necessary to obtain a high enough density of galaxies to measure radial BAO with sufficiently low shot noise up to z=0.85z= 0.85. We conclude that spectroscopic surveys have a superior performance than photometric ones for measuring BAO in the radial direction.Comment: Replaced with minor editorial comments and one extra figure. Results unchange

    Hadronic properties of the S_{11}(1535) studied by electroproduction off the deuteron

    Get PDF
    Properties of excited baryonic states are investigated in the context of electroproduction of baryon resonances off the deuteron. In particular, the hadronic radii and the compositeness of baryon resonances are studied for kinematic situations in which their hadronic reinteraction is the dominant contribution. Specifically, we study the reaction d(e,eâ€ČS11)Nd(e,e'S_{11})N at Q2≄1GeV2Q^2\ge 1 GeV^2 for kinematics in which the produced hadronic state reinteracts predominantly with the spectator nucleon. A comparison of constituent quark model and effective chiral Lagrangian calculations of the S11S_{11} shows substantial sensitivity to the structure of the produced resonance.Comment: 24 pages, 5 figure

    New Physics and CP Violation in Hyperon Nonleptonic Decays

    Full text link
    The sum of the CP-violating asymmetries A(Lambda_-^0) and A(Xi_-^-) in hyperon nonleptonic decays is presently being measured by the E871 experiment. We evaluate contributions to the asymmetries induced by chromomagnetic-penguin operators, whose coefficients can be enhanced in certain models of new physics. Incorporating recent information on the strong phases in Xi->Lambda pi decay, we show that new-physics contributions to the two asymmetries can be comparable. We explore how the upcoming results of E871 may constrain the coefficients of the operators. We find that its preliminary measurement is already better than the epsilon parameter of K-Kbar mixing in bounding the parity-conserving contributions.Comment: 12 pages, 2 figure

    The alpha-particle based on modern nuclear forces

    Get PDF
    The Faddeev-Yakubovsky equations for the alpha-particle are solved. Accurate results are obtained for several modern NN interaction models, which include charge-symmetry breaking effects in the NN force, nucleon mass dependences as well as the Coulomb interaction. These models are augmented by three-nucleon forces of different types and adjusted to the 3N binding energy. Our results are close to the experimental binding energy with a slight overbinding. Thus there is only little room left for the contribution of possible 4N interactions to the alpha-particle binding energy. We also discuss model dependences of the binding energies and the wave functions.Comment: 22 pages REVTeX 4, 12 figures, table with TM parameters added, typos corrected, version as published in PR

    Coupled dark matter-dark energy in light of near Universe observations

    Get PDF
    Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified --and thus can be probed by a combination of tests for the expansion history and the growth of structure--, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inconsistency between reconstructed expansion history and growth may not uniquely indicate deviations from GR. Our low redshift constraints arise from cosmic velocities, redshift space distortions and dark matter abundance in galaxy voids. We find that current data constrain the dimensionless coupling to be |xi|<0.2, but prospects from forthcoming data are for a significant improvement. Future, precise measurements of the Hubble constant, combined with high-precision constraints on the growth of structure, could provide the key to rule out dark coupling models which survive other tests. We shall exploit as well weak equivalence principle violation arguments, which have the potential to highly disfavour a broad family of coupled models.Comment: 34 pages, 6 figures; changes to match published versio

    Negative Kaons in Dense Baryonic Matter

    Get PDF
    Kaon polarization operator in dense baryonic matter of arbitrary isotopic composition is calculated including s- and p-wave kaon-baryon interactions. The regular part of the polarization operator is extracted from the realistic kaon-nucleon interaction based on the chiral and 1/N_c expansion. Contributions of the Lambda(1116), Sigma(1195), Sigma*(1385) resonances are taken explicitly into account in the pole and regular terms with inclusion of mean-field potentials. The baryon-baryon correlations are incorporated and fluctuation contributions are estimated. Results are applied for K- in neutron star matter. Within our model a second-order phase transition to the s-wave K- condensate state occurs at rho_c \gsim 4 \rho_0 once the baryon-baryon correlations are included. We show that the second-order phase transition to the p-wave K−K^- condensate state may occur at densities ρc∌3Ă·5ρ0\rho_c \sim 3\div 5 \rho_0 in dependence on the parameter choice. We demonstrate that a first-order phase transition to a proton-enriched (approximately isospin-symmetric) nucleon matter with a p-wave K- condensate can occur at smaller densities, \rho\lsim 2 \rho_0. The transition is accompanied by the suppression of hyperon concentrations.Comment: 41 pages, 24 figures, revtex4 styl

    Energy and decay width of the pi-K atom

    Get PDF
    The energy and decay width of the pi-K atom are evaluated in the framework of the quasipotential-constraint theory approach. The main electromagnetic and isospin symmetry breaking corrections to the lowest-order formulas for the energy shift from the Coulomb binding energy and for the decay width are calculated. They are estimated to be of the order of a few per cent. We display formulas to extract the strong interaction S-wave pi-K scattering lengths from future experimental data concerning the pi-K atom.Comment: 37 pages, 5 figures, uses Axodra

    Cosmological Applications of Gravitational Lensing

    Get PDF
    The last decade has seen an enormous increase of activity in the field of gravitational lensing, mainly driven by improvements of observational capabilities. I will review the basics of gravitational lens theory, just enough to understand the rest of this contribution, and will then concentrate on several of the main applications in cosmology. Cluster lensing, and weak lensing, will constitute the main part of this review.Comment: 26 pages, including 2 figures (a third figure can be obtained from the author by request) gziped and uuencoded postscript file; to be published in Proceedings of the Laredo Advanced Summer School, Sept. 9

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore