159 research outputs found

    Diffusive energy transport in the S=1 Haldane chain compound AgVP2S6

    Full text link
    We present the results of measurements of the thermal conductivity κ\kappa of the spin S=1 chain compound AgVP_2S_6 in the temperature range between 2 and 300 K and with the heat flow directed either along or perpendicular to the chain direction. The analysis of the anisotropy of the heat transport allowed for the identification of a small but non-negligible magnon contribution κm\kappa_m along the chains, superimposed on the dominant phonon contribution κph\kappa_ph. At temperatures above about 100 K the energy diffusion constant D_E(T), calculated from the κm(T)\kappa_m(T) data, exhibits similar features as the spin diffusion constant D_S(T), previously measured by NMR. In this regime, the behaviour of both transport parameters is consistent with a diffusion process that is caused by interactions inherent to one-dimensional S=1 spin systems.Comment: 6 pages, 4 figure

    Nonadiabatic Dynamics of Atoms in Nonuniform Magnetic Fields

    Full text link
    Dynamics of neutral atoms in nonuniform magnetic fields, typical of quadrupole magnetic traps, is considered by applying an accurate method for solving nonlinear systems of differential equations. This method is more general than the adiabatic approximation and, thus, permits to check the limits of the latter and also to analyze nonadiabatic regimes of motion. An unusual nonadiabatic regime is found when atoms are confined from one side of the z-axis but are not confined from another side. The lifetime of atoms in a trap in this semi-confining regime can be sufficiently long for accomplishing experiments with a cloud of such atoms. At low temperature, the cloud is ellipsoidal being stretched in the axial direction and moving along the z-axis. The possibility of employing the semi-confining regime for studying the relative motion of one component through another, in a binary mixture of gases is discussed.Comment: 1 file, 17 pages, RevTex, 2 table

    Superfluid rotation sensor with helical laser trap

    Full text link
    The macroscopic quantum states of the dilute bosonic ensemble in helical laser trap at the temperatures about 106K10^{-6}\bf {K} are considered in the framework of the Gross-Pitaevskii equation. The helical interference pattern is composed of the two counter propagating Laguerre-Gaussian optical vortices with opposite orbital angular momenta \ell \hbar and this pattern is driven in rotation via angular Doppler effect. Macroscopic observables including linear momentum and angular momentum of the atomic cloud are evaluated explicitly. It is shown that rotation of reference frame is transformed into translational motion of the twisted matter wave. The speed of translation equals the group velocity of twisted wavetrain Vz=Ω/kV_z= \Omega\ell/ k and alternates with a sign of the frame angular velocity Ω\Omega and helical pattern handedness \ell. We address detection of this effect using currently accessible laboratory equipment with emphasis on the difference between quantum and classical fluids.Comment: 8 pages, 3 figures, accepted to publication Journ.Low Temp.Phy

    Apercal-The Apertif calibration pipeline

    Get PDF
    Apertif (APERture Tile In Focus) is one of the Square Kilometre Array (SKA) pathfinder facilities. The Apertif project is an upgrade to the 50-year-old Westerbork Synthesis Radio Telescope (WSRT) using phased-array feed technology. The new receivers create 40 individual beams on the sky, achieving an instantaneous sky coverage of 6.5 square degrees. The primary goal of the Apertif Imaging Survey is to perform a wide survey of 3500 square degrees (AWES) and a medium deep survey of 350 square degrees (AMES) of neutral atomic hydrogen (up to a redshift of 0.26), radio continuum emission and polarisation. Each survey pointing yields 4.6 TB of correlated data. The goal of Apercal is to process this data and fully automatically generate science ready data products for the astronomical community while keeping up with the survey observations. We make use of common astronomical software packages in combination with Python based routines and parallelisation. We use an object oriented module-based approach to ensure easy adaptation of the pipeline. A Jupyter notebook based framework allows user interaction and execution of individual modules as well as a full automatic processing of a complete survey observation. If nothing interrupts processing, we are able to reduce a single pointing survey observation on our five node cluster with 24 physical cores and 256 GB of memory each within 24 h keeping up with the speed of the surveys. The quality of the generated images is sufficient for scientific usage for 44% of the recorded data products with single images reaching dynamic ranges of several thousands. Future improvements will increase this percentage to over 80%. Our design allowed development of the pipeline in parallel to the commissioning of the Apertif system

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284

    Measurement of charm production at central rapidity in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV

    Get PDF
    The pTp_{\rm T}-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0^0, D+^+, and D+^{*+} in the rapidity range y<0.5|y|<0.5, and for transverse momentum 1<pT<121< p_{\rm T} <12 GeV/cc, were measured in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0^0 \rightarrow Kπ\pi, D+^+ \rightarrow Kππ\pi\pi, D+^{*+} \rightarrow D0π^0\pi, and their charge conjugates, and was performed on a Lint=1.1L_{\rm int} = 1.1 nb1^{-1} event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s=2.76\sqrt{s} = 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pTp_{\rm T}-differential production cross sections at s=2.76\sqrt{s} = 2.76 TeV and our previous measurements at s=7\sqrt{s} = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/307
    corecore