277 research outputs found

    Measurement of the nuclear multiplicity ratio for Ks0K^0_s hadronization at CLAS

    Full text link
    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0K_s^0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy zz transferred to the Ks0K_s^0 and the transverse momentum squared pT2p_{T}^2 of the Ks0K_s^0. We find that the multiplicity ratios for Ks0K^0_s are reduced in the nuclear medium at high zz and low pT2p_{T}^2, with a trend for the Ks0K^0_s transverse momentum to be broadened in the nucleus for large pT2p_{T}^2.Comment: Submitted to Phys. Lett.

    Evidence for the Onset of Color Transparency in ρ0\rho^0 Electroproduction off Nuclei

    Get PDF
    We have measured the nuclear transparency of the incoherent diffractive A(e,eρ0)A(e,e'\rho^0) process in 12^{12}C and 56^{56}Fe targets relative to 2^2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced ρ0\rho^0's on a nucleus relative to deuterium, which is sensitive to ρA\rho A interaction, was studied as function of the coherence length (lcl_c), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2Q^2). While the transparency for both 12^{12}C and 56^{56}Fe showed no lcl_c dependence, a significant Q2Q^2 dependence was measured, which is consistent with calculations that included the color transparency effects.Comment: 6 pages and 4 figure

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV

    Get PDF
    Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe

    Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue

    Get PDF
    Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Results: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusions: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers

    Semi-inclusive pi(0) target and beam-target asymmetries from 6 GeV electron scattering with CLAS

    Get PDF
    We present precision measurements of the target and beam-target spin asymmetries from neutral pion electroproduction in deep-inelastic scattering (DIS) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. We scattered 6-GeV, longitudinally polarized electrons off longitudinally polarized protons in a cryogenic 14^{14}NH3_3 target, and extracted double and single target spin asymmetries for epeπ0Xep\rightarrow e^\prime\pi^0X in multidimensional bins in four-momentum transfer (1.0<Q2<3.21.0<Q^2<3.2 GeV2^2), Bjorken-xx (0.12<x<0.480.12<x<0.48), hadron energy fraction (0.4<z<0.70.4<z<0.7), transverse pion momentum (0<PT<1.00<P_T<1.0 GeV), and azimuthal angle ϕh\phi_h between the lepton scattering and hadron production planes. We extracted asymmetries as a function of both xx and PTP_T, which provide access to transverse-momentum distributions of longitudinally polarized quarks. The double spin asymmetries depend weakly on PTP_T. The sin2ϕh\sin 2\phi_h moments are zero within uncertainties, which is consistent with the expected suppression of the Collins fragmentation function. The observed sinϕh\sin\phi_h moments suggest that quark gluon correlations are significant at large xx.Comment: 18 preprint pages, 3 figure

    First measurement of Ωc0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon 0 c is measured for the first time via its hadronic √ decay into −π+ at midrapidity (|y| &lt;0.5) in proton–proton (pp) collisions at the centre-of-mass energy s =13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 &lt; pT &lt; 12 GeV/c. The pT dependence of the 0 c-baryon production relative to the prompt D0-meson and to the prompt 0 c-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of 0 c and prompt + c baryons multiplied by the −π+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e− collisions

    Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions

    Get PDF
    Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons v2{ SP} in collisions of Pb ions at center-of-mass energy per nucleon–nucleon pair √ 2.76 TeV and Xe ions at √ sNN = sNN =5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum for the 5–70% and 0.2–6 GeV/c ranges, respectively. The ratio between v2{ SP} and the elliptic flow coefficient relative to the participant plane v2{4}, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models describing the initial state fluctuations. A significant transverse momentum dependence of the ratio v2{ SP}/v2{4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state f luctuations. The ratios of v2{ SP} and v2{4} to the corresponding initial state eccentricities for Xe–Xe and Pb–Pb collisions at similar initial entropy density show a difference of (7.0 ±0.9)%with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark–gluon plasma produced in heavy-ion collisions at the LHC

    Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural network

    Get PDF
    The energy and mass measurements of jets are crucial tasks for the Large Hadron Collider experiments. This paper presents a new calibration method to simultaneously calibrate these quantities for large-radius jets measured with the ATLAS detector using a deep neural network (DNN). To address the specificities of the calibration problem, special loss functions and training procedures are employed, and a complex network architecture, which includes feature annotation and residual connection layers, is used. The DNN-based calibration is compared to the standard numerical approach in an extensive series of tests. The DNN approach is found to perform significantly better in almost all of the tests and over most of the relevant kinematic phase space. In particular, it consistently improves the energy and mass resolutions, with a 30% better energy resolution obtained for transverse momenta pT > 500 GeV

    Induction of Ciliated Cells from Avian Embryonic Stem Cells Using Three-Dimensional Matrix

    No full text
    We have devised a simple three-dimensional (3D) tissue-culturing method to induce ciliogenesis from avian embryonic stem (ES) cells by using avian fertilized eggs. Unlike the previous reported techniques, this method does not require trypsinization, which would reduce the viability of the cells; it also does not require an air–liquid interface to induce ciliogenesis and to maintain the growth of the induced ciliated cells. ES cells seeded and attached on this collagen-coated chitosan 3D gel grew spontaneously and robustly. Following 2 weeks in culture with inhibition of embryoid body formation, cells with noticeable and vigorous beating cilia were observed. We measured the ciliary beat frequencies of these ES-differentiated ciliated cells for 40 days. These results were consistent with all reported measurements made for other species of ciliated cells, including human, from our previous study. These data imply that the cilia of these ES-derived ciliated cells, beating at their intrinsic basal autorhythmic rate, preserve the integrity of the regulatory mechanisms of ciliary beat frequency. In conclusion, we have shown that ES cells cultured in a 3D tissue-engineered scaffold is a promising approach for developing an in vitro cell model that closely mimics the in vivo ciliated cell natural milieu. This cell model can potentially be the source of ciliated cells for cell-based high-throughput screening and discovery of pulmonary drugs
    corecore