123 research outputs found
S-COL: A Copernican turn for the development of flexibly reusable collaboration scripts
Collaboration scripts are usually implemented as parts of a particular collaborative-learning platform. Therefore, scripts of demonstrated effectiveness are hardly used with learning platforms at other sites, and replication studies are rare. The approach of a platform-independent description language for scripts that allows for easy implementation of the same script on different platforms has not succeeded yet in making the transfer of scripts feasible. We present an alternative solution that treats the problem as a special case of providing support on top of diverse Web pages: In this case, the challenge is to trigger support based on the recognition of a Web page as belonging to a specific type of functionally equivalent pages such as the search query form or the results page of a search engine. The solution suggested has been implemented by means of a tool called S-COL (Scripting for Collaborative Online Learning) and allows for the sustainable development of scripts and scaffolds that can be used with a broad variety of content and platforms. The tool’s functions are described. In order to demonstrate the feasibility and ease of script reuse with S-COL, we describe the flexible re-implementation of a collaboration script for argumentation in S-COL and its adaptation to different learning platforms. To demonstrate that a collaboration script implemented in S-COL can actually foster learning, an empirical study about the effects of a specific script for collaborative online search on learning activities is presented. The further potentials and the limitations of the S-COL approach are discussed
Socio-cognitive scaffolding with collaboration scripts: a meta-analysis
Scripts for computer-supported collaborative learning (CSCL) offer socio-cognitive scaffolding for learners to engage in collaborative activities that are considered beneficial for learning. Yet, CSCL scripts are often criticized for hampering naturally emerging collaboration. Research on the effectiveness of CSCL scripts has shown divergent results. This article reports a meta-analysis about the effects of CSCL scripts on domain-specific knowledge and collaboration skills. Results indicate that CSCL scripts as a kind of socio-cognitive scaffolding can enhance learning outcomes substantially. Learning with CSCL scripts leads to a small positive effect on domain-specific knowledge (d = 0.20) and a large positive effect on collaboration skills (d = 0.95) compared to unstructured CSCL. Further analyses reveal that CSCL scripts are particularly effective for domain-specific learning when they prompt transactive activities (i.e., activities in which a learner’s reasoning builds on the contribution of a learning partner) and when they are combined with additional content-specific scaffolding (worked examples, concept maps, etc.). Future research on CSCL scripts should include measures of learners’ internal scripts (i.e., prior collaboration skills) and the transactivity of the actual learning process
Phospholipids and sports performance
Phospholipids are essential components of all biological membranes. Phosphatidylcholine (PC) and Phosphatidylserine (PS) are Phosphatidyl-phospholipids that are required for normal cellular structure and function. The participation in physical activity often challenges a variety of physiological systems; consequently, the ability to maintain normal cellular function during activity can determine sporting performance. The participation in prolonged intense exercise has been shown to reduce circulatory choline concentrations in some individuals. As choline is a pre-cursor to the neurotransmitter Acetylcholine, this finding has encouraged researchers to investigate the hypothesis that supplementation with PC (or choline salts) could enhance sporting performance. Although the available data that evaluates the effects of PC supplementation on performance are equivocal, acute oral supplementation with PC (~0.2 g PC per kg body mass) has been demonstrated to improve performance in a variety of sporting activities where exercise has depleted circulatory choline concentrations. Short term oral supplementation with soy-derived PS (S-PS) has been reported to attenuate circulating cortisol concentrations, improve perceived well-being, and reduce perceived muscle soreness after exercise. More recently, short term oral supplementation (750 mg per day of S-PS for 10 days) has been demonstrated to improve exercise capacity during high intensity cycling and tended to increase performance during intermittent running. Although more research is warranted to determine minimum dietary Phospholipid requirements for optimal sporting performance, these findings suggest that some participants might benefit from dietary interventions that increase the intakes of PC and PS
The ocean sampling day consortium
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits
Regulatory (pan-)genome of an obligate intracellular pathogen in the PVC superphylum.
Like other obligate intracellular bacteria, the Chlamydiae feature a compact regulatory genome that remains uncharted owing to poor genetic tractability. Exploiting the reduced number of transcription factors (TFs) encoded in the chlamydial (pan-)genome as a model for TF control supporting the intracellular lifestyle, we determined the conserved landscape of TF specificities by ChIP-Seq (chromatin immunoprecipitation-sequencing) in the chlamydial pathogen Waddlia chondrophila. Among 10 conserved TFs, Euo emerged as a master TF targeting >100 promoters through conserved residues in a DNA excisionase-like winged helix-turn-helix-like (wHTH) fold. Minimal target (Euo) boxes were found in conserved developmentally-regulated genes governing vertical genome transmission (cytokinesis and DNA replication) and genome plasticity (transposases). Our ChIP-Seq analysis with intracellular bacteria not only reveals that global TF regulation is maintained in the reduced regulatory genomes of Chlamydiae, but also predicts that master TFs interpret genomic information in the obligate intracellular α-proteobacteria, including the rickettsiae, from which modern day mitochondria evolved
HIV-1 Vpr Triggers Mitochondrial Destruction by Impairing Mfn2-Mediated ER-Mitochondria Interaction
Human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) has been shown to induce host cell death by increasing the permeability of mitochondrial outer membrane (MOM). The mechanism underlying the damage to the mitochondria by Vpr, however, is not clearly illustrated. In this study, Vpr that is introduced, via transient transfection or lentivirus infection, into the human embryonic kidney cell line HEK293, human CD4+ T lymphoblast cell line SupT1, or human primary CD4+ T cells serves as the model system to study the molecular mechanism of Vpr-mediated HIV-1 pathogenesis. The results show that Vpr injures MOM and causes a loss in membrane potential (MMP) by posttranscriptionally reducing the expression of mitofusin 2 (Mfn2) via VprBP-DDB1-CUL4A ubiquitin ligase complex, gradually weakening MOM, and increasing mitochondrial deformation. Vpr also markedly decreases cytoplasmic levels of dynamin-related protein 1 (DRP1) and increases bulging in mitochondria-associated membranes (MAM), the specific regions of endoplasmic reticulum (ER) which form physical contacts with the mitochondria. Overexpression of Mfn2 and DRP1 significantly decreased the loss of MMP and apoptotic cell death caused by Vpr. Furthermore, by employing time-lapse confocal fluorescence microscopy, we identify the transport of Vpr protein from the ER, via MAM to the mitochondria. Taken together, our results suggest that Vpr-mediated cellular damage may occur on an alternative protein transport pathway from the ER, via MAM to the mitochondria, which are modulated by Mfn2 and DRP1
Methods for classically simulating noisy networked quantum architectures
As research on building scalable quantum computers advances, it is important
to be able to certify their correctness. Due to the exponential hardness of
classically simulating quantum computation, straight-forward verification
through classical simulation fails. However, we can classically simulate small
scale quantum computations and hence we are able to test that devices behave as
expected in this domain. This constitutes the first step towards obtaining
confidence in the anticipated quantum-advantage when we extend to scales which
can no longer be simulated.
Realistic devices have restrictions due to their architecture and limitations
due to physical imperfections and noise. Here we extend the usual ideal
simulations by considering those effects. We provide a general methodology for
constructing realistic simulations emulating the physical system which will
both provide a benchmark for realistic devices, and guide experimental research
in the quest for quantum-advantage.
We exemplify our methodology by simulating a networked architecture and
corresponding noise-model; in particular that of the device developed in the
Networked Quantum Information Technologies Hub (NQIT). For our simulations we
use, with suitable modification, the classical simulator of of Bravyi and
Gosset. The specific problems considered belong to the class of Instantaneous
Quantum Polynomial-time (IQP) problems, a class believed to be hard for
classical computing devices, and to be a promising candidate for the first
demonstration of quantum-advantage. We first consider a subclass of IQP,
defined by Bermejo-Vega et al, involving two-dimensional dynamical quantum
simulators, before moving to more general instances of IQP, but which are still
restricted to the architecture of NQIT.Comment: 55 pages, 16 figure
The Ocean Sampling Day Consortium
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits
Simulating the vibrational quantum dynamics of molecules using photonics
Advances in control techniques for vibrational quantum states in molecules present new challenges for modelling such systems, which could be amenable to quantum simulation methods. Here, by exploiting a natural mapping between vibrations in molecules and photons in waveguides, we demonstrate a reprogrammable photonic chip as a versatile simulation platform for a range of quantum dynamic behaviour in different molecules. We begin by simulating the time evolution of vibrational excitations in the harmonic approximation for several four-atom molecules, including H2CS, SO3, HNCO, HFHF, N4 and P4. We then simulate coherent and dephased energy transport in the simplest model of the peptide bond in proteins—N-methylacetamide—and simulate thermal relaxation and the effect of anharmonicities in H2O. Finally, we use multi-photon statistics with a feedback control algorithm to iteratively identify quantum states that increase a particular dissociation pathway of NH3. These methods point to powerful new simulation tools for molecular quantum dynamics and the field of femtochemistry
- …