1,144 research outputs found

    University students and faculty have positive perceptions of open/alternative resources and their utilization in a textbook replacement initiative

    Get PDF
    This is contribution no. 16-114-J from the Kansas Agricultural Experiment Station. The Kansas State University Open/Alternative Textbook Initiative provides grants to faculty members to replace textbooks with open/alternative educational resources (OAERs) that are available at no cost to students. Open educational resources are available for anyone to access, while alternative educational resources are not open. The objective of this study was to determine the perceptions towards OAERs and the initiative, of students enrolled in, and faculty members teaching, courses using OAERs. A survey was sent out to 2,074 students in 13 courses using the OAERs. A total of 524 (25.3%) students completed the survey and a faculty member from each of the 13 courses using OAERs was interviewed. Students rated the OAERs as good quality, preferred using them instead of buying textbooks for their courses, and agreed that they would like OAERs used in other courses. Faculty felt that student learning was somewhat better and it was somewhat easier to teach using OAERs than when they used the traditional textbooks. Nearly all faculty members preferred teaching with OAERs and planned to continue to do so after the funding period. These results, combined with the tremendous savings to students, support the continued funding of the initiative and similar approaches at other institutions

    TRIS III: the diffuse galactic radio emission at δ=+42\delta=+42^{\circ}

    Full text link
    We present values of temperature and spectral index of the galactic diffuse radiation measured at 600 and 820 MHz along a 24 hours right ascension circle at declination δ=+42\delta = +42^{\circ}. They have been obtained from a subset of absolute measurements of the sky temperature made with TRIS, an experiment devoted to the measurement of the Cosmic Microwave Background temperature at decimetric-wavelengths with an angular resolution of about 2020^{\circ}. Our analysis confirms the preexisting picture of the galactic diffuse emission at decimetric wavelength and improves the accuracy of the measurable quantities. In particular, the signal coming from the halo has a spectral index in the range 2.93.12.9-3.1 above 600 MHz, depending on the sky position. In the disk, at TRIS angular resolution, the free-free emission accounts for the 11% of the overall signal at 600 MHz and 21% at 1420 MHz. The polarized component of the galactic emission, evaluated from the survey by Brouw and Spoelstra, affects the observations at TRIS angular resolution by less than 3% at 820 MHz and less than 2% at 600 MHz. Within the uncertainties, our determination of the galactic spectral index is practically unaffected by the correction for polarization. Since the overall error budget of the sky temperatures measured by TRIS at 600 MHz, that is 66 mK(systematic)++18 mK (statistical), is definitely smaller than those reported in previous measurements at the same frequency, our data have been used to discuss the zero levels of the sky maps at 150, 408, 820 and 1420 MHz in literature. Concerning the 408 MHz survey, limiting our attention to the patch of sky corresponding to the region observed by TRIS, we suggest a correction of the base-level of (+3.9±0.6)(+3.9\pm 0.6)K.Comment: Accepted for publication in the Astrophysical Journa

    Multi-frequency study of Local Group Supernova Remnants The curious case of the Large Magellanic Cloud SNR J0528-6714

    Full text link
    Aims. Recent ATCA, XMM-Newton and MCELS observations of the Magellanic Clouds (MCs) cover a number of new and known SNRs which are poorly studied, such as SNR J0528-6714 . This particular SNR exhibits luminous radio-continuum emission, but is one of the unusual and rare cases without detectable optical and very faint X-ray emission (initially detected by ROSAT and listed as object [HP99] 498). We used new multi-frequency radio-continuum surveys and new optical observations at H{\alpha}, [S ii] and [O iii] wavelengths, in combination with XMM-Newton X-ray data, to investigate the SNR properties and to search for a physical explanation for the unusual appearance of this SNR. Methods. We analysed the X-ray and Radio-Continuum spectra and present multi-wavelength morphological studies of this SNR. Results. We present the results of new moderate resolution ATCA observations of SNR J0528-6714. We found that this object is a typical older SNR with a radio spectral index of {\alpha}=-0.36 \pm 0.09 and a diameter of D=52.4 \pm 1.0 pc. Regions of moderate and somewhat irregular polarisation were detected which are also indicative of an older SNR. Using a non-equilibrium ionisation collisional plasma model to describe the X-ray spectrum, we find temperatures kT of 0.26 keV for the remnant. The low temperature, low surface brightness, and large extent of the remnant all indicate a relatively advanced age. The near circular morphology indicates a Type Ia event. Conclusions. Our study revealed one of the most unusual cases of SNRs in the Local Group of galaxies - a luminous radio SNR without optical counterpart and, at the same time, very faint X-ray emission. While it is not unusual to not detect an SNR in the optical, the combination of faint X-ray and no optical detection makes this SNR very unique.Comment: 6 pages, 5 figures, Accepted for publication in A&

    A Sino-German λ\lambda6\ cm polarization survey of the Galactic plane VI. Discovery of supernova remnants G178.2-4.2 and G25.1-2.3

    Full text link
    Supernova remnants (SNRs) were often discovered in radio surveys of the Galactic plane. Because of the surface-brightness limit of previous surveys, more faint or confused SNRs await discovery. The Sino-German λ\lambda6\ cm Galactic plane survey is a sensitive survey with the potential to detect new low surface-brightness SNRs. We want to identify new SNRs from the λ\lambda6\ cm survey map of the Galactic plane. We searched for new shell-like objects in the λ\lambda6\ cm survey maps, and studied their radio emission, polarization, and spectra using the λ\lambda6\ cm maps together with the λ\lambda11\ cm and λ\lambda21\ cm Effelsberg observations. Extended polarized objects with non-thermal spectra were identified as SNRs. We have discovered two new, large, faint SNRs, G178.2-4.2 and G25.1-2.3, both of which show shell structure. G178.2-4.2 has a size of 72 arcmin x 62 arcmin with strongly polarized emission being detected along its northern shell. The spectrum of G178.2-4.2 is non-thermal, with an integrated spectral index of α=0.48±0.13\alpha = -0.48\pm0.13. Its surface brightness is Σ1GHz=7.2x1023Wm2Hz1sr1\Sigma_{1 GHz} = 7.2 x 10^{-23}{Wm^{-2} Hz^{-1} sr^{-1}}, which makes G178.2-4.2 the second faintest known Galactic SNR. G25.1-2.3 is revealed by its strong southern shell which has a size of 80 arcmin x 30\arcmin. It has a non-thermal radio spectrum with a spectral index of α=0.49±0.13\alpha = -0.49\pm0.13. Two new large shell-type SNRs have been detected at λ\lambda6\ cm in an area of 2200 deg^2 along the the Galactic plane. This demonstrates that more large and faint SNRs exist, but are very difficult to detect.Comment: 8 pages, 8 figures, accepted by Astronomy and Astrophysics. For the version with high resolution figures, please go to http://zmtt.bao.ac.cn/6cm/papers/2newSNR.pd

    Radio spectral properties and the magnetic field of the SNR S147

    Full text link
    (Abridged) S147 is a large faint shell-type supernova remnant (SNR). Its remarkable spectral break at cm-wavelengths is an important physical property to characterize the SNR evolution. However, the spectral break is based on radio observations with limited precision. We made new radio continuum and polarization observations of S147 at 11cm and at 6cm with the Effelsberg 100-m telescope and the Urumqi 25-m telescope, respectively. These new data were combined with published lower frequency data from the Effelsberg 100-m telescope and very high frequency data from WMAP to investigate the spectral turnover and polarization properties of S147. S147 consists of numerous filaments embedded in diffuse emission. We found that the integrated flux densities of S147 are 34.8+/-4.0 Jy at 11cm and 15.4+/-3.0Jy at 6cm. These new measurements confirm the known spectral turnover at ~1.5GHz, which can be entirely attributed to the diffuse emission component. The spectral index above the turnover is -1.35+/-0.20. The filamentary emission component has a constant spectral index over the entire wavelength range up to 40.7GHz of -0.35+/-0.15. The weak polarized emission of S147 is at the same level as the ambient diffuse Galactic polarization. The rotation measure of the eastern filamentary shell is about -70 rad/m2. The filamentary and diffuse emission components of S147 have different physical properties, which make S147 outstanding among shell type SNRs.The weak polarization of S147 at 11cm and at 6cm can be attributed to a section of the S147 shell showing a tangential magnetic field direction.Comment: 11 pages, 17 figures, accepted for publication in Astronomy & Astrophysics, the resolution of some figures have been reduced. For high resolution version, see ftp://ftp.mpifr-bonn.mpg.de/outgoing/p098wre/xiao-etal.pdf,revised following the language edito

    New 6cm and 11cm observations of the supernova remnant CTA 1

    Full text link
    (Abridged) We conducted new 6cm and 11cm observations of CTA 1 using the Urumqi 25-m and Effelsberg 100-m telescopes. Data at other wavelengths were included to investigate the spectrum and polarisation properties. We obtained new total intensity and polarisation maps at 6cm and 11cm with angular resolutions of 9.5 arcmin and 4.4 arcmin, respectively. We derived a spectral index of alpha=-0.63+/-0.05 based on the integrated flux densities at 408 MHz, 1420 MHz, 2639 MHz, and 4800 MHz. The spectral index map calculated from data at the four frequencies shows a clear steepening of the spectrum from the strong shell emission towards the north-western breakout region with weak diffuse emission. The decrease of the spectral index is up to about 0.3. The RM map derived from polarisation data at 6cm and 11cm shows a sharp transition between positive RMs in the north-eastern and negative RMs in the south-western part of the SNR. We note a corresponding RM pattern of extragalactic sources and propose the existence of a large-diameter Faraday screen in front of CTA 1, which covers the north-eastern part of the SNR. The RM of the Faraday screen is estimated to be about +45 rad/m2. A RM structure function of CTA 1 indicates a very regular magnetic field within the Faraday screen, which is larger than about 2.7 microG in case of 500 pc distance.Comment: 9 pages, 12 figures, minor changes, accepted for publication in A&

    XMMU J0541.8-6659, a new supernova remnant in the Large Magellanic Cloud

    Full text link
    The high sensitivity of the XMM-Newton instrumentation offers the opportunity to study faint and extended sources in the Milky Way and nearby galaxies such as the Large Magellanic Cloud (LMC) in detail. The ROSAT PSPC survey of the LMC has revealed more than 700 X-ray sources, among which there are 46 supernova remnants (SNRs) and candidates. We have observed the field around one of the most promising SNR candidates in the ROSAT PSPC catalogue, labelled [HP99] 456 with XMM-Newton, to determine its nature. We investigated the XMM-Newton data along with new radio-continuum, near infrared and optical data. In particular, spectral and morphological studies of the X-ray and radio data were performed. The X-ray images obtained in different energy bands reveal two different structures. Below 1.0 keV the X-ray emission shows the shell-like morphology of an SNR with a diameter of ~73 pc, one of the largest known in the LMC. For its thermal spectrum we estimate an electron temperature of (0.49 +/- 0.12)keV assuming non-equilibrium ionisation. The X-ray images above 1.0 keV reveal a less extended source within the SNR emission, located ~1' west of the centre of the SNR and coincident with bright point sources detected in radio-continuum. This hard component has an extent of 0.9' (i.e. ~13 pc at a distance of ~50 kpc) and a non-thermal spectrum. The hard source coincides in position with the ROSAT source [HP99] 456 and shows an indication for substructure. We firmly identify a new SNR in the LMC with a shell-like morphology and a thermal spectrum. Assuming the SNR to be in the Sedov phase yields an age of ~23 kyr. We explore possible associations of the hard non-thermal emitting component with a pulsar wind nebula (PWN) or background active galactic nuclei (AGN).Comment: 8 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    A high-resolution radio survey of the Vela supernova remnant

    Full text link
    This paper presents a high-resolution radio continuum (843 MHz) survey of the Vela supernova remnant. The contrast between the structures in the central pulsar-powered nebula of the remnant and the synchrotron radiation shell allows the remnant to be identified morphologically as a member of the composite class. The data are the first of a composite remnant at spatial scales comparable with those available for the Cygnus Loop and the Crab Nebula, and make possible a comparison of radio, optical and soft X-ray emission from the resolved shell filaments. The survey, made with the Molonglo Observatory Synthesis Telescope, covers an area of 50 square degrees at a resolution of 43'' x 60'', while imaging structures on scales up to 30'.Comment: 18 pages, 7 jpg figures (version with ps figures at http://astro.berkeley.edu/~dbock/papers/); AJ, in pres

    Evolution of the Chandra CCD Spectra of SNR 1987A: Probing the Reflected-Shock Picture

    Full text link
    We continue to explore the validity of the reflected shock structure (RSS) picture in SNR 1987A that was proposed in our previous analyses of the X-ray emission from this object. We used an improved version of our RSS model in a global analysis of 14 CCD spectra from the monitoring program with Chandra. In the framework of the RSS picture, we are able to match both the expansion velocity curve deduced from the analysis of the X-ray images and light curve. Using a simplified analysis, we also show that the X-rays and the non-thermal radio emission may originate from the same shock structure (the blast wave). We believe that using the RSS model in the analysis of grating data from the Chandra monitoring program of SNR 1987A that cover a long enough time interval, will allow us to build a more realistic physical picture and model of SNR 1987A.Comment: 14 pages, 1 Table, 8 figures, accepted for publication in MNRA

    A model of diffuse Galactic Radio Emission from 10 MHz to 100 GHz

    Full text link
    Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. Both our data compilation and our software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at http://space.mit.edu/home/angelica/gsm .Comment: Accuracy improved with 5-year WMAP data. Our data, software and new foreground-cleaned WMAP map are available at https://ascl.net/1011.01
    corecore