909 research outputs found

    Measuring Changes in Brain Metabolite Levels Using Live-animal Magnetic Resonance Spectroscopy and Offline LC-MS Metabolomics in a Binge-ethanol Murine Model

    Get PDF
    Alcoholism and acute alcohol binge are significant public health concerns. Liquid chromatography-mass spectrometry (LC-MS) based metabolomics is a robust and sensitive technique for determining and quantifying transient or permanent biochemical changes within the central nervous system (CNS). However, access to human tissue and CNS biofluid for such analyses is limited in a clinical context. In-vivo magnetic resonance spectroscopy (MRS) is an attractive alternative for clinical measurement but currently the technique is limited to a small to a number of well-characterized, highly abundant analytes. We therefore seek to correlate LC-MS and MRS measurements to better understand and leverage the strengths of each. Following live animal MRS measurement, metabolites in hippocampal brain punch homogenates were quantified by LC-MS, and a Spearman’s correlation coefficient was calculated. We found that the measurements for glutamine and glutamate,, were significantly correlated. Other established neurochemicals, including NAA and aspartate, showed non-significant correlations. NAAG showed little correlation between the two measurements. Additional experiments are ongoing to resolve these discrepancies, and determine how to achieve better agreement between the two methods. In addition,, we used Elements (Proteome Software) to determine differentially expressed metabolites between ethanol exposed and control mice.. An initial pass shows more than 1000 peak-picked features identified in the two conditions, with approximately 200 analytes identified in the metabolite database (human) based on accurate mass. Differentially expressed candidates can be validated further using tandem mass spectrometry and, where possible, the use of authentic standards. Metabolites that change after binge ethanol exposure are reported along with an overview of comparing MRS with LC-MS datasets

    Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network

    Get PDF
    BACKGROUND: Large-scale studies have revealed networks of various biological interaction types, such as protein-protein interaction, genetic interaction, transcriptional regulation, sequence homology, and expression correlation. Recurring patterns of interconnection, or 'network motifs', have revealed biological insights for networks containing either one or two types of interaction. RESULTS: To study more complex relationships involving multiple biological interaction types, we assembled an integrated Saccharomyces cerevisiae network in which nodes represent genes (or their protein products) and differently colored links represent the aforementioned five biological interaction types. We examined three- and four-node interconnection patterns containing multiple interaction types and found many enriched multi-color network motifs. Furthermore, we showed that most of the motifs form 'network themes' – classes of higher-order recurring interconnection patterns that encompass multiple occurrences of network motifs. Network themes can be tied to specific biological phenomena and may represent more fundamental network design principles. Examples of network themes include a pair of protein complexes with many inter-complex genetic interactions – the 'compensatory complexes' theme. Thematic maps – networks rendered in terms of such themes – can simplify an otherwise confusing tangle of biological relationships. We show this by mapping the S. cerevisiae network in terms of two specific network themes. CONCLUSION: Significantly enriched motifs in an integrated S. cerevisiae interaction network are often signatures of network themes, higher-order network structures that correspond to biological phenomena. Representing networks in terms of network themes provides a useful simplification of complex biological relationships

    Synthesis and optimization of low-pressure chemical vapor deposition-silicon nitride coatings deposited from SiHCl3 and NH3

    Get PDF
    Stoichiometric silicon nitride films were deposited by low-pressure chemical vapor deposition from the SiHCl3-NH3-H2-Ar system in a hot wall reactor at pressures ranging from 0.3 to 2 kPa. The films are amorphous for deposition temperatures up to 1000 °C and crystalline, in the α-form, at 1200 °C and above. A method for evaluating the internal stresses based on the curvature of the silicon substrate wafer and the resulting silicon Raman peak shift was developed. Some amorphous films exhibit high internal tensile stresses that can lead to cracking during deposition depending on the mechanism and effective precursors involved. Residual stresses can thus be reduced and cracking avoided by, in descending order of importance, reducing the concentration of reactive gases through dilution, increasing the deposition temperature and decreasing the total pressure. The effects of these parameters on the intrinsic stresses were related to the amount of residual hydrogen successively incorporated and thermally released during the growth of the coating according to the Noskov's model

    Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comment

    Risk of infections in bronchiectasis during disease-modifying treatment and biologics for rheumatic diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bronchiectasis is frequently associated (up to 30%) with chronic inflammatory rheumatic diseases and leads to lower respiratory tract infections. Data are lacking on the risk of lower respiratory tract infections in patients treated with biologic agents.</p> <p>Methods</p> <p>Monocenter, retrospective systematic study of all patients with a chronic inflammatory rheumatic disease and concomitant bronchiectasis, seen between 2000 and 2009. Univariate and multivariate analyses were performed to evidence predictive factors of the number of infectious respiratory events.</p> <p>Results</p> <p>47 patients were included (mean age 64.1 ± 9.1 years, 33 (70.2%) women), with a mean follow-up per patient of 4.3 ± 3.1 years. Rheumatoid arthritis was the main rheumatic disease (90.1%). The mean number of infectious events was 0.8 ± 1.0 event per patient-year. The factors predicting infections were the type of treatment (biologic vs. non biologic disease-modifying treatments), with an odds ratio of 8.7 (95% confidence interval: 1.7-43.4) and sputum colonization by any bacteria (odds ratio 7.4, 2.0-26.8). In multivariate analysis, both factors were independently predictive of infections.</p> <p>Conclusion</p> <p>Lower respiratory tract infectious events are frequent among patients receiving biologics for chronic inflammatory rheumatic disease associated with bronchiectasis. Biologic treatment and pre-existing sputum colonization are independent risk factors of infection occurrence.</p

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surface-Enhanced Nitrate Photolysis on Ice

    Get PDF
    Heterogeneous nitrates photolysis is the trigger for many chemical processes occurring in the polar boundary layer and is widely believed to occur in a quasi-liquid layer (QLL) at the surface of ice. The dipole forbidden character of the electronic transition relevant to boundary layer atmospheric chemistry and the small photolysis/photoproducts quantum yields in ice (and in water) may confer a significant enhancement and interfacial specificity to this important photochemical reaction at the surface of ice. Using amorphous solid water films at cryogenic temperatures as models for the disordered interstitial air/ice interface within the snowpack suppresses the diffusive uptake kinetics thereby prolonging the residence time of nitrate anions at the surface of ice. This approach allows their slow heterogeneous photolysis kinetics to be studied providing the first direct evidence that nitrates adsorbed onto the first molecular layer at the surface of ice are photolyzed more effectively than those dissolved within the bulk. Vibrational spectroscopy allows the ~3-fold enhancement in photolysis rates to be correlated with the nitrates’ distorted intramolecular geometry thereby hinting at the role played by the greater chemical heterogeneity in their solvation environment at the surface of ice than in the bulk. A simple 1D kinetic model suggests 1-that a 3(6)-fold enhancement in photolysis rate for nitrates adsorbed onto the ice surface could increase the photochemical NO[subscript 2] emissions from a 5(8) nm thick photochemically active interfacial layer by 30%(60)%, and 2-that 25%(40%) of the NO[subscript 2] photochemical emissions to the snowpack interstitial air are released from the top-most molecularly thin surface layer on ice. These findings may provide a new paradigm for heterogeneous (photo)chemistry at temperatures below those required for a QLL to form at the ice surface

    Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets

    Get PDF
    Altered structural brain asymmetry in autism spectrum disorder (ASD) has been reported. However, findings have been inconsistent, likely due to limited sample sizes. Here we investigated 1,774 individuals with ASD and 1,809 controls, from 54 independent data sets of the ENIGMA consortium. ASD was significantly associated with alterations of cortical thickness asymmetry in mostly medial frontal, orbitofrontal, cingulate and inferior temporal areas, and also with asymmetry of orbitofrontal surface area. These differences generally involved reduced asymmetry in individuals with ASD compared to controls. Furthermore, putamen volume asymmetry was significantly increased in ASD. The largest case-control effect size was Cohen's d = -0.13, for asymmetry of superior frontal cortical thickness. Most effects did not depend on age, sex, IQ, severity or medication use. Altered lateralized neurodevelopment may therefore be a feature of ASD, affecting widespread brain regions with diverse functions. Large-scale analysis was necessary to quantify subtle alterations of brain structural asymmetry in ASD

    Specific Evolution of F1-Like ATPases in Mycoplasmas

    Get PDF
    F1F0 ATPases have been identified in most bacteria, including mycoplasmas which have very small genomes associated with a host-dependent lifestyle. In addition to the typical operon of eight genes encoding genuine F1F0 ATPase (Type 1), we identified related clusters of seven genes in many mycoplasma species. Four of the encoded proteins have predicted structures similar to the α, β, γ and ε subunits of F1 ATPases and could form an F1-like ATPase. The other three proteins display no similarity to any other known proteins. Two of these proteins are probably located in the membrane, as they have three and twelve predicted transmembrane helices. Phylogenomic studies identified two types of F1-like ATPase clusters, Type 2 and Type 3, characterized by a rapid evolution of sequences with the conservation of structural features. Clusters encoding Type 2 and Type 3 ATPases were assumed to originate from the Hominis group of mycoplasmas. We suggest that Type 3 ATPase clusters may spread to other phylogenetic groups by horizontal gene transfer between mycoplasmas in the same host, based on phylogeny and genomic context. Functional analyses in the ruminant pathogen Mycoplasma mycoides subsp. mycoides showed that the Type 3 cluster genes were organized into an operon. Proteomic analyses demonstrated that the seven encoded proteins were produced during growth in axenic media. Mutagenesis and complementation studies demonstrated an association of the Type 3 cluster with a major ATPase activity of membrane fractions. Thus, despite their tendency toward genome reduction, mycoplasmas have evolved and exchanged specific F1-like ATPases with no known equivalent in other bacteria. We propose a model, in which the F1-like structure is associated with a hypothetical X0 sector located in the membrane of mycoplasma cells
    corecore