49 research outputs found
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.
Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
Effects of dietary vitamin K-3 supplementation on vitamin K-1 and K-2 (menaquinone) dynamics in dairy cows
The effect of dietary vitamin K-3 (VK3) on ruminant animals is not fully investigated. The aim of this study was to examine the effects of dietary VK3 on lactation performance, rumen characteristics, and VK1 and menaquinone (MK, or VK2) dynamics in the rumen, plasma, and milk of dairy cows. Eight Holstein dairy cows in late lactation periods were used in two crossover trials including a control (nontreatment) and a 50 or 200 mg/day (d) VK3 supplementation group. After 14 days, plasma, ruminal fluid, and milk were sampled and their VK1 and MKs contents were measured using fluorescence-high-performance liquid chromatography (HPLC). Milk production was unchanged after feeding 50 mg/day VK3 but marginally decreased after feeding 200 mg/day VK3. The molar ratio of propionate in ruminal fluid was significantly increased on feeding 200 mg/day VK3. Additionally, MK-4 concentrations significantly increased in both plasma and milk after VK3 feeding (50 and 200 mg/day). In ruminal fluid, MK-4 concentrations increased after 200 mg/day VK3 feeding. These results suggest that VK3 may be a good source of MK-4, the biologically active form of VK, in Holstein dairy cows during their late lactation periods. This study provides a basis for understanding the physiological role of VK in dairy cows
Immunohistochemical staining with non-phospho β-catenin as a diagnostic and prognostic tool of COX-2 inhibitor therapy for patients with extra-peritoneal desmoid-type fibromatosis
Abstract Background Immunohistochemical staining with conventional anti-β-catenin antibody has been applied as a diagnostic tool for desmoid-type fibromatosis (DF). This study aimed to evaluate the diagnostic and prognostic value of immunohistochemical staining with anti-non-phospho β-catenin antibody, which might more accurately reflect the aggressiveness of DF, in comparison to the conventional anti-β-catenin antibody. Methods Between 2003 and 2015, 40 patients with extra-peritoneal sporadic DF were prospectively treated with meloxicam or celecoxib, a COX-2 inhibitor, therapy. The efficacy of this treatment was evaluated according to Response Evaluation Criteria in Solid Tumors (RECIST). Immunohistochemical staining was performed on formalin-fixed material to evaluate the expression of β-catenin and non-phospho β-catenin, and the positivity was grouped as negative, weak, moderate, and strong. DNA was isolated from frozen tissue or formalin-fixed materials, and the CTNNB1 mutation status was determined by direct sequencing. Results Of the 40 patients receiving COX-2 inhibitor treatment, there was one with complete remission, 12 with partial remission, 7 with stable disease, and 20 with progressive disease. The mutation sites in CTNNB1 were detected in 22 (55%) of the 40 cases: T41A (17 cases), S45F (3 cases), and T41I and S45P (1 each). The positive nuclear expression of non-phospho β-catenin showed a significant correlation with positive CTNNB1 mutation status detected by Sanger method (p = 0.025), and poor outcome in COX-2 inhibitor therapy (p = 0.022). In contrast, nuclear expression of β-catenin did not show a significant correlation with either CTNNB1 mutation status (p = 0.43) or outcome of COX-2 inhibitor therapy (p = 0.38). Conclusions Nuclear expression of non-phospho β-catenin might more appropriately reflect the biological behavior of DF, and immunohistochemical staining with non-phospho β-catenin could serve as a more useful diagnostic and prognostic tool of COX-2 inhibitor therapy for patients with DF
Clinical results of active surveillance for extra‐abdominal desmoid‐type fibromatosis
Abstract Background The treatment of choice for desmoid‐type fibromatosis (DF) has been changed to active surveillance (AS). However, few studies have reported clinical outcomes of AS modality in Asian countries. This study aimed to clarify the significance of AS as a DF treatment modality. Methods A total of 168 lesions from 162 patients with extra‐abdominal DF were included. The mean age at diagnosis was 39 years (1–88 years), and the median maximum tumor diameter at the first visit was 64.1 mm (13.2–255.8 mm). The clinical outcomes of AS and the risk factors requiring active treatment (AT) (defined as an event) from AS modality were investigated. Results Of the 168 lesions, 94 (56%) were able to continue AS, with a 5‐year event‐free survival of 54.8%. Of the 68 lesions with PD, 21 (30.9%) lesions were able to continue AS. Neck location (p = 0.043) and CTNNB1 S45F mutation (p = 0.003) were significantly associated with the transition to AT, and S45F mutation was a significant factor associated with the transition to AT by multivariate analysis (hazard ratio: 1.96, p = 0.048). AT outcomes after AS were evaluable in 65 lesions, and 49 (75%) lesions did not require a transition to a second AT. Conclusions AS was revealed as an effective treatment modality. The transition to AT needs to be considered for neck location and CTNNB1 S45F mutation DF. Good results can be obtained by selecting a treatment method that considers the tumor location even in cases that require intervention
CTNNB1 S45F mutation predicts poor efficacy of meloxicam treatment for desmoid tumors: a pilot study.
We hypothesized that patterns of CTNNB1 (β-catenin) mutations would affect the outcome of conservative therapy in patients with desmoid tumors. This study aimed to determine the significance of CTNNB1 (β-catenin) mutations in predicting the treatment outcome in patients with desmoid tumors treated with meloxicam, a cyclooxygenase-2 (COX-2) selective inhibitor. Between 2003 and 2012, consecutive thirty-three patients with extra-peritoneal sporadic desmoid tumors were prospectively treated with meloxicam as the initial systemic medical therapy. The efficacy of meloxicam was evaluated according to Response Evaluation Criteria in Solid Tumors (RECIST). DNA was isolated from frozen tissue or formalin-fixed materials. CTNNB1 mutation analysis was performed by direct sequencing. Positivity of nuclear β-catenin staining by immunohistochemistry was compared with the status of CTNNB1 mutations. The correlation between the efficacy of meloxicam treatment and status of CTNNB1 mutations was analyzed. Of the 33 patients with meloxicam treatment, one showed complete remission (CR), 7 partial remission (PR), 12 stable disease (SD), and 13 progressive disease (PD). The following 3 point mutations were identified in 21 of the 33 cases (64%): T41A (16 cases), S45F (4 cases) and S45P (one case). The nuclear expression of β-catenin correlated significantly with CTNNB1 mutation status (p = 0.035); all four cases with S45F mutation exhibited strong nuclear expression of β-catenin. S45F mutation was significantly associated with a poor response (all cases; PD) (p = 0.017), whereas the other mutations had no impact on efficacy. The CTNNB1 mutation status was of significant prognostic value for meloxicam treatment in patients with sporadic desmoid tumors