8 research outputs found

    Prevalence of plasma small dense LDL is increased in obesity in a Thai population

    Get PDF
    Background Plasma low density lipoprotein (LDL) particles vary in size, density, electrical charge and chemical composition. An increased presence of small dense LDL (sdLDL), along with raised triglyceride concentrations and decreased high density lipoprotein (HDL) cholesterol concentrations is commonly known as the atherogenic triad and has been observed in some cases of obesity, principally in Europe and America. This study examines the prevalence of sdLDL in the plasma of an obese (BMI ≥ 25 kg/m2) Thai population. Methods Plasma from fasted obese (n = 48) and non-obese (n = 16) Thai participants was subjected to density gradient ultracentrifugation in iodixanol to separate lipoproteins. Gradients were unloaded top-to-bottom into 20 fractions which were assayed for cholesterol, triglyceride, apo B and apo A-1 to identify lipoprotein types and subtypes. Results LDL cholesterol was subfractionated into LDL I + II (fractions 3–6, ρ = 1.021-1.033 g/ml) which was considered to represent large buoyant LDL (lbLDL), LDL III (fractions 7–9, ρ = 1.036-1.039 g/ml) which was considered to represent sdLDL, and, LDL IV (fractions 10–12, ρ = 1.044-1.051 g/ml) which was considered to represent very sdLDL. Concentrations of LDL III and IV were increased by 15-20% in obese participants whilst that of LDL I + II was concomitantly decreased by 10%. This was accompanied by a 50% increase in plasma triglyceride concentrations and 15% decrease in HDL cholesterol concentrations. Only 3/16 (19%) non-obese participants had a pattern B LDL cholesterol profile (peak density of >1.033 g/ml), whilst 28/48 (58%) obese participants were pattern B. When expressed as a fraction of the LDL concentration, total sdLDL (i.e. LDL III + IV) showed highly significant correlations to plasma triglyceride concentrations and the triglyceride/HDL cholesterol ratio. Conclusions The prevalence of sdLDL is increased in obesity in a Thai population such that they demonstrate a similar atherogenic triad to that previously observed in European and American populations

    Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation

    Get PDF
    Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions
    corecore