31 research outputs found

    K0S and Λ production in Pb-Pb collisions at sNN−−−−√=2.76  TeV

    Get PDF
    The ALICE measurement of K0S and Λ production at midrapidity in Pb-Pb collisions at sNN−−−√=2.76  TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4  GeV/c (0.6  GeV/c for Λ) to 12  GeV/c. The pT dependence of the Λ/K0S ratios exhibits maxima in the vicinity of 3  GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at s√=0.9  TeV and at s√=7  TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured pT spectra above 2  GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of pT, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the pT dependence of the Λ/K0S ratio

    Measurement of D-s(+) product ion and nuclear modification factor in Pb-Pb collisions at root S-NN=2.76 TeV

    Get PDF
    Peer reviewe

    phi-Meson production at forward rapidity in p-Pb collisions at root s(NN)=5.02 TeV and in pp collisions at root s=2.76 TeV

    Get PDF
    The first study of phi-meson production in p-Pb collisions at forward and backward rapidity, at a nucleonnucleon centre-of-mass energy root s(NN)= 5.02 TeV, has been performed with the ALICE apparatus at the LHC. The phi-mesons have been identified in the dimuon decay channel in the transverse momentum (p(T)) range 1 <p(T) <7GeV/c, both in the p-going (2.03 <y <3.53) and the Pb-going (-4.46 <y <-2.96) directions - where ystands for the rapidity in the nucleon-nucleon centre-of-mass - the integrated luminosity amounting to 5.01 +/- 0.19nb(-1) and 5.81 +/- 0.20nb(-1), respectively, for the two data samples. Differential cross sections as a function of transverse momentum and rapidity are presented. The forward-backward ratio for f-meson production is measured for 2.96Peer reviewe

    Measurement of transverse energy at midrapidity in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    We report the transverse energy (ET) measured with ALICE at midrapidity in Pb-Pb collisions at root s(NN) = 2.76 TeV as a function of centrality. The transverse energy was measured using identified single-particle tracks. The measurement was cross checked using the electromagnetic calorimeters and the transverse momentum distributions of identified particles previously reported by ALICE. The results are compared to theoretical models as well as to results from other experiments. The mean ET per unit pseudorapidity (eta), , in 0%-5% central collisions is 1737 +/- 6(stat.) +/- 97(sys.) GeV. We find a similar centrality dependence of the shape of as a function of the number of participating nucleons to that seen at lower energies. The growth in at the LHC energies exceeds extrapolations of low-energy data. We observe a nearly linear scaling of with the number of quark participants. With the canonical assumption of a 1 fm/c formation time, we estimate that the energy density in 0%-5% central Pb-Pb collisions at root s(NN) = 2.76 TeV is 12.3 +/- 1.0 GeV/fm(3) and that the energy density at the most central 80 fm(2) of the collision is at least 21.5 +/- 1.7 GeV/fm(3). This is roughly 2.3 times that observed in 0%-5% central Au-Au collisions at root s(NN) = 200 GeV.Peer reviewe

    Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at root s(NN)=2.76 TeV

    Get PDF
    We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of root(NN)-N-s = 2.76 TeV. The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2 <k(T) <0.7 GeV/c. We find that the R-side and R-out radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via R-side oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive-indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3 + 1D hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum R-side oscillations, but systematically underestimate the oscillation magnitude.Peer reviewe

    D-meson production in p-Pb collisions at root S-NN=5.02 TeV and in pp collisions at root S=7 TeV

    Get PDF
    Peer reviewe

    Correlated Event-by-Event Fluctuations of Flow Harmonics in Pb-Pb Collisions at root S-NN=2.76 TeV

    Get PDF
    Peer reviewe

    J/Psi suppression at forward rapidity in Pb-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    The inclusive J/Psi production has been studied in Pb-Pb and pp collisions at the centre-of-mass energy per nucleon pair root sNN= 5.02TeV, using the ALICE detector at the CERN LHC. The J/Psi meson is reconstructed, in the centre-of-mass rapidity interval 2.5 <y <4and in the transverse- momentum range p(T)<12GeV/c, via its decay to a muon pair. In this Letter, we present results on the inclusive J/Psi cross section in pp collisions at root s= 5.02TeV and on the nuclear modification factor R-AA. The latter is presented as a function of the centrality of the collision and, for central collisions, as a function of the transverse momentum p(T) of the J/Psi. The measured R-AA values indicate a suppression of the J/Psi in nuclear collisions and are then compared to our previous results obtained in Pb-Pb collisions at root sNN= 2.76TeV. The ratio of the R-AA values at the two energies is also computed and compared to calculations of statistical and dynamical models. The numerical value of the ratio for central events (0-10% centrality) is 1.17 +/- 0.04( stat)+/- 0.20(syst). In central events, as a function of p(T), a slight increase of R-AA with collision energy is visible in the region 2 <p(T)<6GeV/c. Theoretical calculations qualitatively describe the measurements, within uncertainties. (C) 2017 The Author. Published by Elsevier B.V.Peer reviewe

    Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    Get PDF
    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density rho(mu) > 5.9 m(-2). Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10(16) eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.Peer reviewe

    Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    Peer reviewe
    corecore