67 research outputs found

    Democratic Constraints and Adherence to the Classical Gold Standard

    Get PDF
    We study how domestic politics affected the decisions of countries to adhere to the classical gold standard. Using a variety of econometric techniques and controlling for a wide range of economic factors, we demonstrate that political constraints were important in the decision of countries to adopt the gold standard as well as in the decision to suspend it. Specifically we find that the probability of adherence to the gold standard was ceteris paribus lower for countries in which domestic politics were organized in a more open and democratic fashion. This effect appears to be driven largely by the extent of domestic political competition and was particularly relevant for peripheral countries

    Democratic constraints and adherence to the classical gold standard

    Get PDF
    We study how political institutions affected the decision of countries to adhere to the classical gold standard. Using a variety of econometric techniques and controlling for a wide range of relevant economic and political factors, we find that the probability of adherence to the gold standard before World War I was ceteris paribus lower for countries which were more democratic. This effect can be linked to how open the political process was to different segments of the population and the extent of political competition resulting from that. The effect was particularly relevant for peripheral countries and it influenced both the decision of countries to adopt the gold standard as well as the decision to suspend it

    The non-classical nuclear import carrier Transportin 1 modulates circadian rhythms through its effect on PER1 nuclear localization

    Get PDF
    Circadian clocks are molecular timekeeping mechanisms that allow organisms to anticipate daily changes in their environment. The fundamental cellular basis of these clocks is delayed negative feedback gene regulation with PERIOD and CRYPTOCHROME containing protein complexes as main inhibitory elements. For a correct circadian period, it is essential that such clock protein complexes accumulate in the nucleus in a precisely timed manner, a mechanism that is poorly understood. We performed a systematic RNAi-mediated screen in human cells and identified 15 genes associated with the nucleo-cytoplasmic translocation machinery, whose expression is important for circadian clock dynamics. Among them was Transportin 1 (TNPO1), a non-classical nuclear import carrier, whose knockdown and knockout led to short circadian periods. TNPO1 was found in endogenous clock protein complexes and particularly binds to PER1 regulating its (but not PER2's) nuclear localization. While PER1 is also transported to the nucleus by the classical, Importin beta-mediated pathway, TNPO1 depletion slowed down PER1 nuclear import rate as revealed by fluorescence recovery after photobleaching (FRAP) experiments. In addition, we found that TNPO1-mediated nuclear import may constitute a novel input pathway of how cellular redox state signals to the clock, since redox stress increases binding of TNPO1 to PER1 and decreases its nuclear localization. Together, our RNAi screen knocking down import carriers (but also export carriers) results in short and long circadian periods indicating that the regulatory pathways that control the timing of clock protein subcellular localization are far more complex than previously assumed. TNPO1 is one of the novel players essential for normal circadian periods and potentially for redox regulation of the clock

    HIF prolyl hydroxylase inhibition protects skeletal muscle from eccentric contraction-induced injury

    Get PDF
    BACKGROUND: In muscular dystrophy and old age, skeletal muscle repair is compromised leading to fibrosis and fatty tissue accumulation. Therefore, therapies that protect skeletal muscle or enhance repair would be valuable medical treatments. Hypoxia-inducible factors (HIFs) regulate gene transcription under conditions of low oxygen, and HIF target genes EPO and VEGF have been associated with muscle protection and repair. We tested the importance of HIF activation following skeletal muscle injury, in both a murine model and human volunteers, using prolyl hydroxylase inhibitors that stabilize and activate HIF. METHODS: Using a mouse eccentric limb injury model, we characterized the protective effects of prolyl hydroxylase inhibitor, GSK1120360A. We then extended these studies to examine the impact of EPO modulation and infiltrating immune cell populations on muscle protection. Finally, we extended this study with an experimental medicine approach using eccentric arm exercise in untrained volunteers to measure the muscle-protective effects of a clinical prolyl hydroxylase inhibitor, daprodustat. RESULTS: GSK1120360A dramatically prevented functional deficits and histological damage, while accelerating recovery after eccentric limb injury in mice. Surprisingly, this effect was independent of EPO, but required myeloid HIF1α-mediated iNOS activity. Treatment of healthy human volunteers with high-dose daprodustat reduced accumulation of circulating damage markers following eccentric arm exercise, although we did not observe any diminution of functional deficits with compound treatment. CONCLUSION: The results of these experiments highlight a novel skeletal muscle protective effect of prolyl hydroxylase inhibition via HIF-mediated expression of iNOS in macrophages. Partial recapitulation of these findings in healthy volunteers suggests elements of consistent pharmacology compared to responses in mice although there are clear differences between these two systems

    Fast relational learning using bottom clause propositionalization with artificial neural networks

    Get PDF
    Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning applications, e.g. graph mining and link analysis. Inductive Logic Programming (ILP) performs relational learning either directly by manipulating first-order rules or through propositionalization, which translates the relational task into an attribute-value learning task by representing subsets of relations as features. In this paper, we introduce a fast method and system for relational learning based on a novel propositionalization called Bottom Clause Propositionalization (BCP). Bottom clauses are boundaries in the hypothesis search space used by ILP systems Progol and Aleph. Bottom clauses carry semantic meaning and can be mapped directly onto numerical vectors, simplifying the feature extraction process. We have integrated BCP with a well-known neural-symbolic system, C-IL2P, to perform learning from numerical vectors. C-IL2P uses background knowledge in the form of propositional logic programs to build a neural network. The integrated system, which we call CILP++, handles first-order logic knowledge and is available for download from Sourceforge. We have evaluated CILP++ on seven ILP datasets, comparing results with Aleph and a well-known propositionalization method, RSD. The results show that CILP++ can achieve accuracy comparable to Aleph, while being generally faster, BCP achieved statistically significant improvement in accuracy in comparison with RSD when running with a neural network, but BCP and RSD perform similarly when running with C4.5. We have also extended CILP++ to include a statistical feature selection method, mRMR, with preliminary results indicating that a reduction of more than 90 % of features can be achieved with a small loss of accuracy

    Innovatieproject Hondsbossche Duinen : Eindrapportage, definitief 01

    Get PDF
    In 2015 is de Hondsbossche en Pettemer Zeewering (HPZ) versterkt met 35 miljoen kubieke meter zand. Dit gebied heet nu de ‘Hondsbossche Duinen (HD)’. Het ontwerp bestaat uit een zachte ondiepe vooroever (strand) met verschillende soorten duinhabitats. Deze gekoppelde systemen voorzien in de primaire veiligheid en realiseren tegelijkertijd de gevraagde ruimtelijke kwaliteit. Hiermee is de aanleg van de Hondsbossche Duinen een mooi voorbeeld van ‘Bouwen met Natuur’. Deze methode is niet vanzelfsprekend, en het is daarom van belang om te meten of de werking van het ontwerp overeenkomt met de verwachtingen. Het opzetten van een aan de HPZ gekoppeld innovatieproject heeft ons in staat gesteld om te leren in hoeverre we in staat zijn vooraf geformuleerde (natuurlijke) ontwerpdoelstellingen daadwerkelijk te realiseren. Dit type inzichten is onontbeerlijk voor een snellere, betere en goedkopere uitvoering van volgende versterkingsprojecten en het beheer van gerealiseerde projecte

    Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    Get PDF
    Essentially all biological processes depend on protein-protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'
    corecore