1,038 research outputs found

    High-Performance and Ultralow-Noise Two-Dimensional Heterostructure Field-Effect Transistors with One-Dimensional Electrical Contacts

    Get PDF
    Two-dimensional heterostructure field-effect transistors (2D-HFETs) with one-dimensional electrical contacts to atomically thin channels have recently shown great device performance, such as reduced contact resistance, leading to ballistic transport and enhanced carrier mobility. While a number of low-frequency noise studies exists on bare graphene devices supported on silicon dioxide gate insulators with surface contacts, such studies in heterostructure devices comprising epitaxial graphene on hexagonal boron nitride (hBN) with edge contacts are extremely limited. In this article, we present a systematic, temperature-dependent study of electrical transport and low-frequency noise in edge-contacted high-mobility HFET with a single atomic-layer graphene channel encapsulated by hBN and demonstrate ultralow noise with a Hooge parameter of ≈10–5. By combining measurements and modeling based on underlying microscopic scattering mechanisms caused by charge carriers and phonons, we directly correlate the high-performance, temperature-dependent transport behavior of this device with the noise characteristics. Our study provides a pathway towards engineering low-noise graphene-based high-performance 2D-FETs with one-dimensional edge contacts for applications such as digital electronics and chemical/biological sensing.acceptedVersio

    Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    Full text link
    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.Comment: 14 page

    Radiation hard 3D silicon pixel sensors for use in the ATLAS detector at the HL-LHC

    Get PDF
    The High Luminosity LHC (HL-LHC) upgrade requires the planned Inner Tracker (ITk) of the ATLAS detector to tolerate extremely high radiation doses. Specifically, the innermost parts of the pixel system will have to withstand radiation fluences above 1 × 1016 neqcm-2. Novel 3D silicon pixel sensors offer a superior radiation tolerance compared to conventional planar pixel sensors, and are thus excellent candidates for the innermost parts of the ITk. This paper presents studies of 3D pixel sensors with pixel size 50 × 50 μm2 mounted on the RD53A prototype readout chip. Following a description of the design and fabrication steps, Test Beam results are presented for unirradiated as well as heavily irradiated sensors. For particles passing at perpendicular incidence, it is shown that average efficiencies above 96% are reached for sensors exposed to fluences of 1 × 1016 neqcm-2 when biased to 80 V.publishedVersio

    3D silicon detectors for neutron imaging applications

    Get PDF
    Neutron detection is of great importance in many fields spanning from scientific research, to nuclear science, and to medical application. The development of silicon-based neutron detectors with enhanced neutron detection efficiency can offer several advantages such as spatial resolution, enhanced dynamic range and background discrimination. In this work, increased detection efficiency is pursued by fabricating high aspect ratio 3D micro-structures filled with neutron converting materials (B4C) on planar silicon detectors. An in-depth feasibility study was carried out in all aspects of the sensor fabrication technology. Passivation of the etched structures was studied in detail, to ensure good electrical performance. The conformal deposition of B4C with a newly developed process showed excellent results. Preliminary electrical characterisation of the completed devices is promising, and detectors have been mounted on dedicated boards in view of the upcoming tests with neutrons.publishedVersio

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+K+μ+μB^+ \to K^+\mu^+\mu^-, B0K(892)0μ+μB^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0ϕ(1020)μ+μB^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+K+μ+μB^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0K0μ+μB^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0ϕμ+μdecayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for a new heavy charged vector boson WW^\prime decaying to an electron-neutrino pair in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96\unit{TeV}. The data were collected with the CDF II detector and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No significant excess above the standard model expectation is observed and we set upper limits on σB(Weν)\sigma\cdot{\cal B}(W^\prime\to e\nu). Assuming standard model couplings to fermions and the neutrino from the WW^\prime boson decay to be light, we exclude a WW^\prime boson with mass less than 1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR

    Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons

    Get PDF
    We report measurements of the resonance properties of Lambda_c(2595)+ and Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+ pi+/- final states. These measurements are performed using data corresponding to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. Exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averages for Sigma_c states, and significantly smaller uncertainties than the world averages for excited Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17 pages, 15 figure
    corecore