17 research outputs found

    The ABCflux database : Arctic-boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems

    Get PDF
    Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic-boreal zone (ABZ) have provided valuable information but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying time periods, often with only minimal site ancillary data, thus limiting their potential to be used in large-scale carbon budget assessments. To bridge these gaps, we developed a standardized monthly database of Arctic-boreal CO2 fluxes (ABCflux) that aggregates in situ measurements of terrestrial net ecosystem CO2 exchange and its derived partitioned component fluxes: gross primary productivity and ecosystem respiration. The data span from 1989 to 2020 with over 70 supporting variables that describe key site conditions (e.g., vegetation and disturbance type), micrometeorological and environmental measurements (e.g., air and soil temperatures), and flux measurement techniques. Here, we describe these variables, the spatial and temporal distribution of observations, the main strengths and limitations of the database, and the potential research opportunities it enables. In total, ABCflux includes 244 sites and 6309 monthly observations; 136 sites and 2217 monthly observations represent tundra, and 108 sites and 4092 observations represent the boreal biome. The database includes fluxes estimated with chamber (19 % of the monthly observations), snow diffusion (3 %) and eddy covariance (78 %) techniques. The largest number of observations were collected during the climatological summer (June-August; 32 %), and fewer observations were available for autumn (September-October; 25 %), winter (December-February; 18 %), and spring (March-May; 25 %). ABCflux can be used in a wide array of empirical, remote sensing and modeling studies to improve understanding of the regional and temporal variability in CO2 fluxes and to better estimate the terrestrial ABZ CO2 budget. ABCflux is openly and freely available online (Virkkala et al., 2021b, https://doi.org/10.3334/ORNLDAAC/1934).Peer reviewe

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    Persistence and memory time scales in root-zone soil moisture dynamics

    No full text
    The memory timescale that characterizes root-zone soil moisture remains the dominant measure in seasonal forecasts of land-climate interactions. This memory is a quasi-deterministic timescale associated with the losses (e.g. evapotranspiration) from the soil column and is often interpreted as persistence in soil moisture states. Persistence, however, represents a distribution of time periods where soil moisture resides above or below some prescribed threshold, and is therefore inherently probabilistic. Using multiple soil moisture datasets collected at high resolution (sub-hourly) across different biomes and climates, this paper explores the differences, underlying dynamics, and relative importance of memory and persistence timescales in root-zone soil moisture. A first-order Markov process, commonly used to interpret soil moisture fluctuations derived from climate simulations, is also used as a reference model. Persistence durations of soil moisture below the plant water-stress level (chosen as the threshold), and the temporal spectrum of up- and down-crossings of this threshold, are compared to the memory timescale and spectrum of the full time series, respectively. The results indicate that despite the differences between meteorological drivers, the spectrum of threshold-crossings is similar across sites, and follows a unique relation with that of the full soil moisture series. The distribution of persistence times exhibits an approximate stretched exponential type and reflects a likelihood of exceeding the memory at all sites. However, the rainfall counterpart of these distributions shows that persistence of dry atmospheric periods is less likely at sites with long soil moisture memory. The cluster exponent, a measure of the density of threshold crossings in a time frame, reveals that the clustering tendency in rainfall events (on-off switches) does not translate directly to clustering in soil moisture. This is particularly the case in climates where rainfall and evapotranspiration are out of phase, resulting in less ordered (more independent) persistence in soil moisture than in rainfall
    corecore