163 research outputs found

    HST WFC3/IR Observations of Active Galactic Nucleus Host Galaxies at z~2: Supermassive Black Holes Grow in Disk Galaxies

    Full text link
    We present the rest-frame optical morphologies of active galactic nucleus (AGN) host galaxies at 1.5<z<3, using near-infrared imaging from the Hubble Space Telescope Wide Field Camera 3, the first such study of AGN host galaxies at these redshifts. The AGN are X-ray selected from the Chandra Deep Field South and have typical luminosities of 1E42 < L_X < 1E44 erg/s. Accreting black holes in this luminosity and redshift range account for a substantial fraction of the total space density and black hole mass growth over cosmic time; they thus represent an important mode of black hole growth in the universe. We find that the majority (~80%) of the host galaxies of these AGN have low Sersic indices indicative of disk-dominated light profiles, suggesting that secular processes govern a significant fraction of the cosmic growth of black holes. That is, many black holes in the present-day universe grew much of their mass in disk-dominated galaxies and not in early-type galaxies or major mergers. The properties of the AGN host galaxies are furthermore indistinguishable from their parent galaxy population and we find no strong evolution in either effective radii or morphological mix between z~2 and z~0.05.Comment: 7 pages, 3 figures, 2 tables. Accepted for publication in the Astrophysical Journal Letter

    Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    Get PDF
    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011^{11} M⊙M_\odot that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (NH≲1.1×1022N_H \lesssim 1.1 \times 10^{22} cm−2^{-2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40< 40 counts per nucleus; f2−10keV≲1.2×10−13f_{2-10 keV} \lesssim 1.2 \times 10^{-13} erg s−1^{-1} cm−2^{-2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.Comment: 8 pages, including 5 figures and 1 table. Accepted by Ap

    Scattered X-rays in Obscured Active Galactic Nuclei and their Implications for Geometrical Structure and Evolution

    Full text link
    We construct a new sample of 32 obscured active galactic nuclei (AGNs) selected from the Second XMM-Newton Serendipitous Source Catalogue to investigate their multiwavelength properties in relation to the "scattering fraction", the ratio of the soft X-ray flux to the absorption-corrected direct emission. The sample covers a broad range of the scattering fraction (0.1%-10%). A quarter of the 32 AGNs have a very low scattering fraction (smaller than 0.5%), which suggests that they are buried in a geometrically thick torus with a very small opening angle. We investigate correlations between the scattering fraction and multiwavelength properties. We find that AGNs with a small scattering fraction tend to have low [O III]lambda5007/X-ray luminosity ratios. This result agrees with the expectation that the extent of the narrow-line region is small because of the small opening angle of the torus. There is no significant correlation between scattering fraction and far-infrared luminosity. This implies that a scale height of the torus is not primarily determined by starburst activity. We also compare scattering fraction with black hole mass or Eddington ratio and find a weak anti-correlation between the Eddington ratio and scattering fraction. This implies that more rapidly growing supermassive black holes tend to have thicker tori.Comment: 13 pages, 10 figures, accepted for publication in Ap

    Spatially-Resolved Spectroscopy of SDSS J0952+2552: a Confirmed Dual AGN

    Get PDF
    Most massive galaxies contain supermassive black holes (SMBHs) in their cores. When galaxies merge, gas is driven to nuclear regions and can accrete onto the central black hole. Thus one expects to see dual AGN in a fraction of galaxy mergers. Candidates for galaxies containing dual AGN have been identified by the presence of double-peaked narrow [O III] emission lines and by high spatial resolution images of close galaxy pairs. Spatially-resolved spectroscopy is needed to confirm these galaxy pairs as systems with spatially-separated double SMBHs. With the Keck 2 Laser Guide Star Adaptive Optics system and the OSIRIS near-infrared integral field spectrograph, we obtained spatially-resolved spectra for SDSS J09527.62+255257.2, a radio-quiet quasar shown by previous imaging to consist of a galaxy and its close (1.0") companion. We find that the main galaxy is a Type 1 AGN with both broad and narrow AGN emission lines in its spectrum, while the companion galaxy is a Type 2 AGN with narrow emission lines only. The two AGN are separated by 4.8 kpc, and their redshifts correspond to those of the double peaks of the [O III] emission line seen in the SDSS spectrum. Line diagnostics indicate that both components of the double [O III] emission lines are due to AGN photoionization. These results confirm that J0952+2552 contains two spatially-separated AGN. As one of the few confirmed dual AGN at an intermediate separation of < 10 kpc, this system offers a unique opportunity to study galaxy mergers and their effect on black hole growth.Comment: 6 pages, 4 figures, 1 table, submitted to ApJL. See http://people.ucsc.edu/~rmcgurk/McGurk_dualagn.pdf for a high-resolution version of the pape

    A population of luminous accreting black holes with hidden mergers

    Full text link
    Major galaxy mergers are thought to play an important part in fuelling the growth of supermassive black holes. However, observational support for this hypothesis is mixed, with some studies showing a correlation between merging galaxies and luminous quasars and others showing no such association. Recent observations have shown that a black hole is likely to become heavily obscured behind merger-driven gas and dust, even in the early stages of the merger, when the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations further suggest that such obscuration and black-hole accretion peaks in the final merger stage, when the two galactic nuclei are closely separated (less than 3 kiloparsecs). Resolving this final stage requires a combination of high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray observations to detect highly obscured sources. However, large numbers of obscured luminous accreting supermassive black holes have been recently detected nearby (distances below 250 megaparsecs) in X-ray observations. Here we report high-resolution infrared observations of hard-X-ray-selected black holes and the discovery of obscured nuclear mergers, the parent populations of supermassive-black-hole mergers. We find that obscured luminous black holes (bolometric luminosity higher than 2x10^44 ergs per second) show a significant (P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a sample of inactive galaxies with matching stellar masses and star formation rates (1.1 per cent), in agreement with theoretical predictions. Using hydrodynamic simulations, we confirm that the excess of nuclear mergers is indeed strongest for gas-rich major-merger hosts of obscured luminous black holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the authors' version of the wor

    The Demographics of Broad Line Quasars in the Mass-Luminosity Plane II. Black Hole Mass and Eddington Ratio Functions

    Full text link
    We employ a flexible Bayesian technique to estimate the black hole mass and Eddington ratio functions for Type 1 (i.e., broad line) quasars from a uniformly-selected data set of ~58,000 quasars from the SDSS DR7. We find that the SDSS becomes significantly incomplete at M_{BH} < 3 x 10^8 M_{Sun} or L / L_{Edd} < 0.07, and that the number densities of Type 1 quasars continue to increase down to these limits. Both the mass and Eddington ratio functions show evidence of downsizing, with the most massive and highest Eddington ratio black holes experiencing Type 1 quasar phases first, although the Eddington ratio number densities are flat at z < 2. We estimate the maximum Eddington ratio of Type 1 quasars in the observable Universe to be L / L_{Edd} ~ 3. Consistent with our results in Paper I, we do not find statistical evidence for a so-called "sub-Eddington boundary" in the mass-luminosity plane of broad line quasars, and demonstrate that such an apparent boundary in the observed distribution can be caused by selection effect and errors in virial BH mass estimates. Based on the typical Eddington ratio in a given mass bin, we estimate typical growth times for the black holes in Type 1 quasars and find that they are typically comparable to or longer than the age of the universe, implying an earlier phase of accelerated (i.e., with higher Eddington ratios) and possibly obscured growth. The large masses probed by our sample imply that most of our black holes reside in what are locally early type galaxies, and we interpret our results within the context of models of self-regulated black hole growth.Comment: Submitted to ApJ, 25 pages (emulateapj), 15 figures; revised to match accepted version with primary changes to the introduction and discussion, replaced Fig 1

    Double-peaked Narrow-Line Signatures of Dual Supermassive Black Holes in Galaxy Merger Simulations

    Full text link
    We present a first attempt to model the narrow-line (NL) region of active galactic nuclei (AGN) in hydrodynamic simulations of galaxy mergers, using a novel physical prescription. This model is used to determine the origin of double-peaked NL (dNL) AGN in merging galaxies and their connection to supermassive black hole (SMBH) pairs, motivated by recent observations of such objects. We find that dNL AGN induced by the relative motion of SMBH pairs are a generic but short-lived feature of gaseous major mergers. dNL AGN should often be observed in late-stage mergers, during the kpc-scale phase of SMBH inspiral or soon after the SMBH merger. However, even within the kpc-scale phase, only a minority of dNL AGN are directly induced by SMBH motion; their lifetimes are typically a few Myr. Most double peaks arise from gas kinematics near the SMBH, although prior to the SMBH merger up to 80% of all dNL profiles may be influenced by SMBH motion via altered peak ratios or velocity offsets. The total lifetimes of dNL AGN depend strongly on viewing angle and on properties of the merging galaxies. Also, in a typical merger, at least 10-40% of the double peaks induced by SMBH motion have small projected separations, 0.1-1 kpc, such that dual peaks of stellar surface brightness are not easily resolved. Diffuse tidal features can indicate late-stage galaxy mergers, although they do not distinguish SMBH pairs from merged SMBHs. We show that dNL profiles with peak velocity splittings > 500 km s^-1 or with measurable overall velocity shifts are often associated with SMBH pairs. Our results support the notion that selection of dNL AGN is a promising method for identifying dual SMBH candidates, but demonstrate the critical importance of high-resolution, multi-wavelength follow-up observations, and the use of multiple lines of evidence, for confirming the dual nature of candidate SMBH pairs. (Abridged)Comment: 24 pages, 9 figures. Moderate revisions; accepted to MNRA

    Host Galaxy Properties of the Swift BAT Ultra Hard X-ray Selected AGN

    Get PDF
    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift BAT sample. The BAT AGN host galaxies have intermediate optical colors (u-r and g-r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log M_*>10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III]. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.Comment: 30 pages, 30 figures, accepted for publication in Ap
    • …
    corecore