122 research outputs found

    A systematic search for massive black hole binaries in SDSS spectroscopic sample

    Full text link
    We present the results of a systematic search for massive black hole binaries in the Sloan Digital Sky Survey spectroscopic database. We focus on bound binaries, under the assumption that one of the black holes is active. In this framework, the broad lines associated to the accreting black hole are expected to show systematic velocity shifts with respect to the narrow lines, which trace the rest-frame of the galaxy. For a sample of 54586 quasars and 3929 galaxies at redshifts 0.1<z<1.5 we brute-force model each spectrum as a mixture of two quasars at two different redshifts. The spectral model is a data-driven dimensionality reduction of the SDSS quasar spectra based on a matrix factorization. We identified 32 objects with peculiar spectra. Nine of them can be interpreted as black hole binaries. This doubles the number of known black hole binary candidates. We also report on the discovery of a new class of extreme double-peaked emitters with exceptionally broad and faint Balmer lines. For all the interesting sources, we present detailed analysis of the spectra, and discuss possible interpretations.Comment: 10 pages, 2 figures, accepted for publication in Ap

    Photometric identification of blue horizontal branch stars

    Full text link
    We investigate the performance of some common machine learning techniques in identifying BHB stars from photometric data. To train the machine learning algorithms, we use previously published spectroscopic identifications of BHB stars from SDSS data. We investigate the performance of three different techniques, namely k nearest neighbour classification, kernel density estimation and a support vector machine (SVM). We discuss the performance of the methods in terms of both completeness and contamination. We discuss the prospect of trading off these values, achieving lower contamination at the expense of lower completeness, by adjusting probability thresholds for the classification. We also discuss the role of prior probabilities in the classification performance, and we assess via simulations the reliability of the dataset used for training. Overall it seems that no-prior gives the best completeness, but adopting a prior lowers the contamination. We find that the SVM generally delivers the lowest contamination for a given level of completeness, and so is our method of choice. Finally, we classify a large sample of SDSS DR7 photometry using the SVM trained on the spectroscopic sample. We identify 27,074 probable BHB stars out of a sample of 294,652 stars. We derive photometric parallaxes and demonstrate that our results are reasonable by comparing to known distances for a selection of globular clusters. We attach our classifications, including probabilities, as an electronic table, so that they can be used either directly as a BHB star catalogue, or as priors to a spectroscopic or other classification method. We also provide our final models so that they can be directly applied to new data.Comment: To appear in A&A. 19 pages, 22 figures. Tables 7, A3 and A4 available electronically onlin

    Finding rare objects and building pure samples: Probabilistic quasar classification from low resolution Gaia spectra

    Full text link
    We develop and demonstrate a probabilistic method for classifying rare objects in surveys with the particular goal of building very pure samples. It works by modifying the output probabilities from a classifier so as to accommodate our expectation (priors) concerning the relative frequencies of different classes of objects. We demonstrate our method using the Discrete Source Classifier, a supervised classifier currently based on Support Vector Machines, which we are developing in preparation for the Gaia data analysis. DSC classifies objects using their very low resolution optical spectra. We look in detail at the problem of quasar classification, because identification of a pure quasar sample is necessary to define the Gaia astrometric reference frame. By varying a posterior probability threshold in DSC we can trade off sample completeness and contamination. We show, using our simulated data, that it is possible to achieve a pure sample of quasars (upper limit on contamination of 1 in 40,000) with a completeness of 65% at magnitudes of G=18.5, and 50% at G=20.0, even when quasars have a frequency of only 1 in every 2000 objects. The star sample completeness is simultaneously 99% with a contamination of 0.7%. Including parallax and proper motion in the classifier barely changes the results. We further show that not accounting for class priors in the target population leads to serious misclassifications and poor predictions for sample completeness and contamination. (Truncated)Comment: MNRAS accepte

    Search of sub-parsec massive binary black holes through line diagnosis II

    Get PDF
    Massive black hole binaries at sub-parsec separations may display in their spectra anomalously small flux ratios between the MgII and CIV broad emission lines, i.e. F_MgII/F_CIV <~ 0.1, due to the erosion of the broad line region around the active, secondary black hole, by the tidal field of the primary. In Paper I by Montuori et al. (2011), we focussed on broad lines emitted by gas bound to the lighter accreting member of a binary when the binary is at the center of a hollow density region (the gap) inside a circum-binary disc. The main aim of this new study is at exploring the potential contribution to the broad line emission by the circum-binary disc and by gaseous streams flowing toward the black hole through the gap. We carry out a post-process analysis of data extracted from a SPH simulation of a circum-binary disc around a black hole binary. Our main result is that the MgII to CIV flux ratio can be reduced to ~ 0.1 within an interval of sub-pc binary separations of the order of a ~ (0.01-0.2)(f_Edd/0.1)^(1/2) pc corresponding to orbital periods of ~ (20-200) (f_Edd/0.1)^(3/4) years for a secondary BH mass in the range M_2 ~ 10^7-10^9 M_sun and a binary mass ratio of 0.3. At even closer separations this ratio returns to increase to values that are indistinguishable from the case of a single AGN (typically F_MgII/F_CIV ~ 0.3-0.4) because of the contribution to the MgII line from gas in the circum-binary disc.Comment: 7 pages, 3 figure, accepted for publication in MNRA

    Structure of the SMC - Stellar component distribution from 2MASS data

    Full text link
    The spatial distribution of the SMC stellar component is investigated from 2MASS data. The morphology of the different age populations is presented. The center of the distribution is calculated and compared with previous estimations. The rotation of the stellar content and possible consequence of dark matter presence are discussed. The different stellar populations are identified through a CMD diagram of the 2MASS data. Isopleth contour maps are produced in every case, to reveal the spatial distribution. The derived density profiles are discussed. The older stellar population follows an exponential profile at projected diameters of about 5 kpc (~5 deg) for the major axis and ~4 kpc for the minor axis, centred at RA: 0h:51min, Dec: -73deg 7' (J2000.0). The centre coordinates are found the same for all the different age population maps and are in good accordance with the kinematical centre of the SMC. However they are found considerably different from the coordinates of the centre of the gas distribution. The fact that the older population found on an exponential disk, gives evidence that the stellar content is rotating, with a possible consequence of dark matter presence. The strong interactions between the MCs and the MilkyWay might explain the difference in the distributions of the stellar and gas components. The lack in the observed velocity element, that implies absence of rotation, and contradicts with the consequences of exponential profile of the stellar component, may also be a result of the gravitational interactions.Comment: 7 Pages, 6 figures, accepted for publication in A&

    The nature of massive black hole binary candidates - II. Spectral energy distribution atlas

    Get PDF
    Recoiling supermassive black holes (SMBHs) are considered one plausible physical mechanism to explain high velocity shifts between narrow and broad emission lines sometimes observed in quasar spectra. If the sphere of influence of the recoiling SMBH is such that only the accretion disc is bound, the dusty torus would be left behind, hence the SED should then present distinctive features (i.e. a mid-infrared deficit). Here, we present results from fitting the spectral energy distributions (SEDs) of 32 type-1 AGN with high velocity shifts between broad and narrow lines. The aim is to find peculiar properties in the multiwavelength SEDs of such objects by comparing their physical parameters (torus and disc luminosity, intrinsic reddening, and size of the 12 μm emitter) with those estimated from a control sample of ∼1000 typical quasars selected from the Sloan Digital Sky Survey in the same redshift range. We find that all sources, with the possible exception of J1154+0134, analysed here present a significant amount of 12 μm emission. This is in contrast with a scenario of an SMBH displaced from the centre of the galaxy, as expected for an undergoing recoil event

    Structure and evolution of circumbinary disks around supermassive black hole (SMBH) binaries

    Full text link
    It is generally believed that gaseous disks around supermassive black hole (SMBH) binaries in centers of galaxies can facilitate binary merger and give rise to observational signatures both in electromagnetic and gravitational wave domains. We explore general properties of circumbinary disks by reformulating standard equations for the viscous disk evolution in terms of the viscous angular momentum flux F_J. In steady state F_J is a linear function of the specific angular momentum, which is a generalization of (but is not equivalent to) the standard constant \dot M disk solution. If the torque produced by the central binary is effective at stopping gas inflow and opening a gap (or cavity) in the disk, then the inner part of the circumbinary disk can be approximated as a constant F_J disk. We compute properties of such disks in different physical regimes relevant for SMBH binaries and use these results to understand the gas-assisted evolution of SMBH pairs starting at separations 10^{-4}-10^{-2} pc. We find the following. (1) Pile-up of matter at the inner edge of the disk leads to continuous growth of the torque acting on the binary and can considerably accelerate its orbital evolution compared to the gravitational wave-driven decay. (2) Torque on the binary is determined non-locally and does not in general reflect the disk properties in the vicinity of the binary. (3) Binary evolution depends on the past history of the disk evolution. (4) Eddington limit can be important in circumbinary disks even if they accrete at sub-Eddington rates at late stages of binary evolution. (5) Circumbinary disk self-consistently evolved under the action of the binary torque emits more power and has spectrum different from the spectrum of constant \dot M disk - it is steeper (\nu F_\nu\propto \nu^{12/7}) and extends to shorter wavelength, facilitating its detection.Comment: Discussion of overflow across the orbit of the secondary added in section 5.2.6. 23 pages, 10 figures, submitted to Ap

    Luminous AGB stars in nearby galaxies. A study using Virtual Observatory tools

    Full text link
    Aims. This study focuses on very luminous Mbol<-6.0 mag AGB stars with J-Ks>1.5 mag and H-Ks>0.4 mag in the LMC, SMC, M31, and M33 from 2MASS data. Methods.The data were taken from the 2MASS All-Sky Point Source catalogue archive. We used Virtual Observatory tools and took advantage of its capabilities at various stages in the analysis. Results. It is well known that stars with the colors we selected correspond mainly to carbon stars. Although the most luminous AGBs detected here contain a large number of carbon stars,they are not included in existing catalogues produced from data in the optical domain, where they are not visible since they are dust-enshrouded. A comparison of the AGB stars detected with combined near and mid-infrared data from MSX and 2MASS in the LMC shows that 10% of the bright AGB stars are bright carbon stars never detected before and that the other 50% are OH/IR oxygen rich stars, whereas the 40% that remain were not cross-matched. Conclusions. The catalogues of the most luminous AGB stars compiled here are an important complement to existing data. In the LMC, these bright AGB stars are centrally located, whereas they are concentrated in an active star-formation ring in M31. In the SMC and M33, there are not enough of them to draw definite conclusions, although they tend to be centrally located. Their luminosity functions are similar for the four galaxies we studied.Comment: 16 pages, 12 figures, 4 tables (Appendix A), accepted in A&

    The expected performance of stellar parametrization with Gaia spectrophotometry

    Full text link
    Gaia will obtain astrometry and spectrophotometry for essentially all sources in the sky down to a broad band magnitude limit of G=20, an expected yield of 10^9 stars. Its main scientific objective is to reveal the formation and evolution of our Galaxy through chemo-dynamical analysis. In addition to inferring positions, parallaxes and proper motions from the astrometry, we must also infer the astrophysical parameters of the stars from the spectrophotometry, the BP/RP spectrum. Here we investigate the performance of three different algorithms (SVM, ILIUM, Aeneas) for estimating the effective temperature, line-of-sight interstellar extinction, metallicity and surface gravity of A-M stars over a wide range of these parameters and over the full magnitude range Gaia will observe (G=6-20mag). One of the algorithms, Aeneas, infers the posterior probability density function over all parameters, and can optionally take into account the parallax and the Hertzsprung-Russell diagram to improve the estimates. For all algorithms the accuracy of estimation depends on G and on the value of the parameters themselves, so a broad summary of performance is only approximate. For stars at G=15 with less than two magnitudes extinction, we expect to be able to estimate Teff to within 1%, logg to 0.1-0.2dex, and [Fe/H] (for FGKM stars) to 0.1-0.2dex, just using the BP/RP spectrum (mean absolute error statistics are quoted). Performance degrades at larger extinctions, but not always by a large amount. Extinction can be estimated to an accuracy of 0.05-0.2mag for stars across the full parameter range with a priori unknown extinction between 0 and 10mag. Performance degrades at fainter magnitudes, but even at G=19 we can estimate logg to better than 0.2dex for all spectral types, and [Fe/H] to within 0.35dex for FGKM stars, for extinctions below 1mag.Comment: MNRAS, in press. Minor corrections made in v
    corecore