1,014 research outputs found
Coupling Superconducting Qubits via a Cavity Bus
Superconducting circuits are promising candidates for constructing quantum
bits (qubits) in a quantum computer; single-qubit operations are now routine,
and several examples of two qubit interactions and gates having been
demonstrated. These experiments show that two nearby qubits can be readily
coupled with local interactions. Performing gates between an arbitrary pair of
distant qubits is highly desirable for any quantum computer architecture, but
has not yet been demonstrated. An efficient way to achieve this goal is to
couple the qubits to a quantum bus, which distributes quantum information among
the qubits. Here we show the implementation of such a quantum bus, using
microwave photons confined in a transmission line cavity, to couple two
superconducting qubits on opposite sides of a chip. The interaction is mediated
by the exchange of virtual rather than real photons, avoiding cavity induced
loss. Using fast control of the qubits to switch the coupling effectively on
and off, we demonstrate coherent transfer of quantum states between the qubits.
The cavity is also used to perform multiplexed control and measurement of the
qubit states. This approach can be expanded to more than two qubits, and is an
attractive architecture for quantum information processing on a chip.Comment: 6 pages, 4 figures, to be published in Natur
Noncommutative geometry inspired black holes in higher dimensions at the LHC
When embedding models of noncommutative geometry inspired black holes into
the peridium of large extra dimensions, it is natural to relate the
noncommutativity scale to the higher-dimensional Planck scale. If the Planck
scale is of the order of a TeV, noncommutative geometry inspired black holes
could become accessible to experiments. In this paper, we present a detailed
phenomenological study of the production and decay of these black holes at the
Large Hadron Collider (LHC). Noncommutative inspired black holes are relatively
cold and can be well described by the microcanonical ensemble during their
entire decay. One of the main consequences of the model is the existence of a
black hole remnant. The mass of the black hole remnant increases with
decreasing mass scale associated with noncommutative and decreasing number of
dimensions. The experimental signatures could be quite different from previous
studies of black holes and remnants at the LHC since the mass of the remnant
could be well above the Planck scale. Although the black hole remnant can be
very heavy, and perhaps even charged, it could result in very little activity
in the central detectors of the LHC experiments, when compared to the usual
anticipated black hole signatures. If this type of noncommutative inspired
black hole can be produced and detected, it would result in an additional mass
threshold above the Planck scale at which new physics occurs.Comment: 21 pages, 7 figure
A new concurrent chemotherapy with vinorelbine and mitomycin C in combination with radiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck
Objective: The purpose of this pilot study was to evaluate the feasibility and toxicity of concurrent chemotherapy with vinorelbine and mitomycin C in combination with accelerated radiotherapy (RT) in patients with locally advanced cancer of the head and neck. Patients and Methods: Between January 2003 and March 2004, 15 patients with T4/N2-3 squamous cell carcinoma (12/15) and with N3 cervical lymph node metastases of carcinoma of unknown primary (3/15) were treated with chemotherapy and simultaneous accelerated RT. Results: 11 patients completed therapy without interruption or dose reduction. Grade 3 - 4 acute mucosal toxicity was observed in 9/15 patients, grade 4 hematologic toxicity in 6/15 patients. At a median follow-up of 7.5 months, 2 patients have died of intercurrent disease, 2 patients have experienced local relapse; 5 patients are alive with no evidence of disease at the primary tumor site. Discussion: The described regimen is highly effective, but led to remarkable side effects
Experimental violation of a Bell's inequality in time with weak measurement
The violation of J. Bell's inequality with two entangled and spatially
separated quantum two- level systems (TLS) is often considered as the most
prominent demonstration that nature does not obey ?local realism?. Under
different but related assumptions of "macrorealism", plausible for macroscopic
systems, Leggett and Garg derived a similar inequality for a single degree of
freedom undergoing coherent oscillations and being measured at successive
times. Such a "Bell's inequality in time", which should be violated by a
quantum TLS, is tested here. In this work, the TLS is a superconducting quantum
circuit whose Rabi oscillations are continuously driven while it is
continuously and weakly measured. The time correlations present at the detector
output agree with quantum-mechanical predictions and violate the inequality by
5 standard deviations.Comment: 26 pages including 10 figures, preprint forma
Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+
We perform amplitude analyses of the decays , , and , and measure CP-violating
parameters and partial branching fractions. The results are based on a data
sample of approximately decays, collected with the
BABAR detector at the PEP-II asymmetric-energy factory at the SLAC National
Accelerator Laboratory. For , we find a direct CP asymmetry
in of , which differs
from zero by . For , we measure the
CP-violating phase .
For , we measure an overall direct CP asymmetry of
. We also perform an angular-moment analysis of
the three channels, and determine that the state can be described
well by the sum of the resonances , , and
.Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree
with published versio
Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2
Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by
driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and
seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for
possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2
gradient ranging from ,0.5–250 mmol kg21 (i.e. ,20–6000 matm pCO2) at three different temperatures (i.e. 10, 15, 20uC for
E. huxleyi and 15, 20, 25uC for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth,
photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and
production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for
growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate
temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high
temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and
carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean
acidification at a given temperature can be negative, neutral or positive depending on that strain’s temperature optimum.
This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when
interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of
changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the
future ocean
30 years of collaboration
We highlight some of the most important cornerstones of the long standing and very fruitful collaboration of the Austrian Diophantine Number Theory research group and the Number Theory and Cryptography School of Debrecen. However, we do not plan to be complete in any sense but give some interesting data and selected results that we find particularly nice. At the end we focus on two topics in more details, namely a problem that origins from a conjecture of Rényi and Erdős (on the number of terms of the square of a polynomial) and another one that origins from a question of Zelinsky (on the unit sum number problem). This paper evolved from a plenary invited talk that the authors gaveat the Joint Austrian-Hungarian Mathematical Conference 2015, August 25-27, 2015 in Győr (Hungary)
Listeria monocytogenes in Milk Products
peer-reviewedMilk and milk products are frequently identified as vectors for transmission of Listeria monocytogenes. Milk can be contaminated at farm level either by indirect external contamination from the farm environment or less frequently by direct contamination of the milk from infection in the animal. Pasteurisation of milk will kill L. monocytogenes, but post-pasteurisation contamination, consumption of unpasteurised milk and manufacture of unpasteurised milk products can lead to milk being the cause of outbreaks of listeriosis. Therefore, there is a concern that L. monocytogenes in milk could lead to a public health risk. To protect against this risk, there is a need for awareness surrounding the issues, hygienic practices to reduce the risk and adequate sampling and analysis to verify that the risk is controlled. This review will highlight the issues surrounding L. monocytogenes in milk and milk products, including possible control measures. It will therefore create awareness about L. monocytogenes, contributing to protection of public health
Varieties of living things: Life at the intersection of lineage and metabolism
publication-status: Publishedtypes: Articl
Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples
- …
